March 19, 2007

ŧ

VIA CERTIFIED MAIL

Mary Logan U.S. EPA Region V (SR-6J) 77 W Jackson Boulevard Chicago, IL 60604-3590

RÜTGERS Organics Corporation

Sheila Abraham Ohio EPA - NE District Office Div. Of Emergency & Remedial Response 2110 East Aurora Road Twinsburg, OH 44087

Remedial Response Section Manager Ohio EPA - DERR P O Box 1049 Lazarus Government Center Office 122 South Front Street Columbus, OH 43216-1049

Re: JANUARY 2007 MONTHLY REPORT

RI/FS & REMEDIAL DESIGN & REMOVAL ACTION

NEASE CHEMICAL SITE

SALEM, OHIO

In accordance with Paragraph X E of the Administrative Order by Consent regarding a Remedial Investigation/Feasibility Study (RI/FS) of the Nease Chemical Site in Salem, Ohio, attached is a copy of the February 2007 RI/FS Progress Report This report also includes the monthly progress report for the remedial design (OU-2) in accordance with Paragraph X of the Administrative Order on Consent, effective as of May 10, 2006.

Additionally, in accordance with Paragraph 14 of the Administrative Order by Consent, signed December 17, 1993, attached is a copy of the February 2007 Removal Action Progress Report.

The report delivery after the 10th. calendar day of the month was approved by Mary Logan, US EPA Remedial Site Manager, Please contact us if you have any questions regarding activities discussed in these reports.

Sincerely,

Dr Rainer F Domalski

Site Coordinator

Enclosures

cc M. Hardy/Heidi Goldstein – Thompson Hine Steve Finn – Golder Associates, Inc.

031907

201 Struble Road State College, PA 16801

Phone. 814-238-2424 Fax: 814-238-1567 web-site: http.RUETGERS-ORGANICS-CORP.COM

Member of the RÚTGERS Chemicals Group

US EPA RECORDS CENTER REGION 5

NEASE CHEMICAL SITE, SALEM, OHIO REMEDIAL INVESTIGATION/FEASIBILITY STUDY REMEDIAL DESIGN (OU-2) MONTHLY PROGRESS REPORT FEBRUARY 2007

1. INTRODUCTION

This progress report has been prepared in accordance with Paragraph XE of the Administrative Order of Consent (AOC) regarding a Remedial Investigation/Feasibility Study (RI/FS) and Paragraph X of the Administrative Order on Consent regarding the Remedial Design (RD/OU-2) of the Nease Chemical Site in Salem, Ohio. The report summarizes the major RI/FS and RD actions during the month along with investigation results and any problems encountered in the project. Activities planned for next month are also presented.

2 SUMMARY OF ACTIVITIES PERFORMED

2.1 PROJECT ACTIVITY SUMMARY

The activities that were initiated and/or completed during the month are described. All activities were performed in accordance with the detailed protocol provided in the approved Work Plan.

2.2 FIELDWORK

2.2.1 RI/FS

The floodplain soil samples taken in September 2006 were shipped to the OEPA lab for mirex analysis.

2.2.2 RD (OU-2)

According with the PDI workplan the following work was accomplished during this month:

- NZVI Field Pilot Study The fourth (Week 8) and fifth (Week 12) rounds of groundwater sampling were completed the weeks of January 29 and February 26, 2007, respectively.
- <u>Vapor Intrusion</u> A site reconnaissance and Indoor Air Assessment Survey was completed on February 22 at residential properties located at 1229 and 1235 Benton Road.

2.3 Reports

2.3.1 RI/FS

In preparation of the upcoming Feasibility Study (FS) for OU-3 (Feeder Creek, MFLBC), the agencies and ROC agreed on additional sampling in the MFLBC including sediment, fish, surface water and flood plain soil to have a sufficient data base for the study. The first step, the reconnaissance of sediment bodies in the MFLBC, was performed from August 1 through 15, 2005. Sediment and fish samples were taken in the week of October 10, 2005, the surface water samples in the last October week. The analytical results of the samples taken were validated by the ROC's technical consultant and submitted to the agencies. Sampling locations for the flood plain soil were determined. ROC has obtained an access agreement with the owners. The actual sampling was conducted in the week of September 18, 2006.

The technical team consisting from representatives of U.S. EPA, Ohio EPA, Golder and ROC had a kick-off meeting on September 27, 2006 in Columbus, Ohio, to commence the work on the Feasibility Study (FS) for the Feeder Creek and MFLBC. A follow-up meeting was conducted on December 13, 2006 discussing potential cleanup goals and methods.

2.3.2 RD (OU-2)

The results of the ongoing PDI field investigation and lab studies are discussed in frequent conference calls between the agencies, ROC and its technical consultant.

Based on the groundwater sampling results in two off-site temporary monitoring wells, it was decided to sample sub-slab soil vapors at two residential homes at Benton Road.

<u>S/S/S Treatability Study</u> – Results of Phase III of the treatability study were evaluated and a technical memorandum providing a status update of the S/S/S, including the Phase III results and proposal for final phase of the Study (Phase IV) was initiated.

<u>PDI Report - Technical Memorandum – Baseline Conditions</u> – Golder is currently preparing the baseline condition report.

2.4 MEETINGS

None.

3 VARIATIONS FROM THE APPROVED WORK PLAN

None.

4 RESULTS OF SAMPLING, TESTS AND ANALYSES

The results from the sampling were and will be provided to the agencies in specific reports.

5 PROJECT SCHEDULE

The current Work Plan schedule identifies completion and target dates for project activities. Those scheduled to occur over the next several months include:

- Feasibility Study OU-3 (Feeder Creek, Middle Fork of Little Beaver Creek)
- o Continue PDI field/lab work (NZVI sampling) as well as preparation of PDI Report

6 DIFFICULTIES ENCOUNTERED AND ACTION TAKEN TO RESOLVE PROBLEMS

No significant difficulties were encountered.

7 PERSONNEL CHANGES

None

8 ANTICIPATED PROJECT ACTIVITIES FOR MARCH 2007

- Monthly Progress Report February 2007
- RI/FS
 - OU-3 Feasibility Study
 - Analysis of soil samples recovered during the floodplain sampling in September 2006

- RD (OU-2)
 - o Continue with the PDI field work which includes the following:
 - Southern Area Groundwater Assessment Sub-slab soil vapor sampling at residential properties located at 1229 and 1235 Benton Road and sampling of the NAPL present in temporary wells TW06-21 and TW06-36.
 - Continue with the NZVI Field Pilot Study Evaluation of results from Weeks 8 and 12 and submittal of proposal for biotreatability of benzene in groundwater.
 - S/S/S Treatability Study Submittal of a Technical Memorandum summarizing the Phase III results and proposal for treatment method and reagent formulation for the final phase of the Study.
 - o Continue with the preparation of the Baseline Conditions Report.

TABLE 1 NEASE CHEMICAL SITE, SALEM, OHIO RI/FS AND RD (OU-2) SCHEDULE

DATE	TASK/ACTIVITY/DELIVERABLE/MILESTONE				
	RI/FS	RD (OU-2)			
	Documentation of the Site Activities through July 31, 2004 can be reviewed in the July 2004 Monthly Progress Report				
August 30, 2004 September 1, 2004 September 9,	US EPA Region V/ OEPA approve Endangerment Assessment Draft Feasibility Study (OU-2) submitted to the agencies for review				
2004	Submit Monthly Progress Report				
September 13, 2004	Submit Final Revision to Endangerment Assessment				
October 8, 2004	Submit Monthly Progress Report				
November 10, 2004	Submit Monthly Progress Report				
November 22, 2004	Received Agencies' comments for draft FS (OU-2)				
December 10, 2004	Submit Monthly Progress Report				
January 10, 2005	Submit Monthly Progress Report				
February 10, 2005	Submit Monthly Progress Report				
March 1, 2005	Final Draft Feasibility Study (OU-2) submitted to agencies for review				
March 4, 2005	Submit Monthly Progress Report				
April 8, 2005	Submit Monthly Progress Report				
April 21, 2005	US EPA Region V/OEPA approve Final Feasibility Study for OU-2				
May 9, 2005	Submit Monthly Progress Report US EPA Region V published the				
May 31, 2005	Proposed Remedial Action the OU- 2 (onsite)				
June 9, 2005	Submit Monthly Progress Report				
July 8, 2005	Submit Monthly Progress Report				
August 10, 2005	Submit Monthly Progress Report				
Aug. 1 – 15, 2005	MFLBC – Reconnaissance of sediment bodies				
September 9, 2005	Submit Monthly Progress Report				
September 29, 2005	US EPA Region V signs Final Record of Decision for OU-2				
October 10, 2005	Submit Monthly Progress Report				

DATE	TASK/ACTIVITY/DELIVERABLE/MILESTONE				
	RI/FS	RD (OU-2)			
November 9, 2005	Submit Monthly Progress Report				
December 8, 2005	Submit Monthly Progress Report				
January 9, 2006	Submit Monthly Progress Report				
February 8, 2006	Submit Monthly Progress Report				
March 15, 2006	Submit Monthly Progress Report				
April 10, 2006	Submit Monthly Progress Report				
May 8, 2006	Submit Monthly Progress Report				
May 10, 2006		Administrative Order on Consent for OU-2 Remedial Design effective			
May 25, 2006		Submittal of draft PDI Workplan			
June 8, 2006	Submit Month	nly Progress Report			
June 9, 2006		ACO Financial Assurance - Trust Fund			
June 28,		placed US EPA comments to draft PDI workplan			
2006	Out will be	received			
July 10, 2006	Submit Montr	nly Progress Report			
July 12, 2006		Sampling of well PZ-6B-U			
Aug. 1, 2006		Submit revised PDI Workplan			
Aug. 4, 2006	Submit Month	nly Progress Report			
Aug. 21, 2006		Commenced with PDI Fieldwork			
Aug. 28, 2006		Conditional Approval of PDI Workplan			
Sept. 8, 2006		nly Progress Report			
Sept. 18, 2006	Soil Sampling in the MFLBC Flood Plain				
Sept 27,		Submit Final PDI Workplan incl. response			
2006 October 8,	1	to agencies' comments			
2006	Submit Month	lly Progress Report			
Nov. 6, 2006	Submit Month	lly Progress Report			
Dec. 12, 2006	Submit Month	lly Progress Report			
Dec. 13, 2006	OU-3 Meeting in US EPA Chicago Office				
Jan. 8, 2007	Submit Month	lly Progress Report			
Febr. 6, 2007	Submit Month	lly Progress Report			
March 19, 2007	Submit Month	ly Progress Report			

NEASE CHEMICAL SITE, SALEM, OHIO REMOVAL ACTION MONTHLY PROGRESS REPORT FEBRUARY 2007

1.0 INTRODUCTION

This progress report has been prepared in accordance with Paragraph 14 of the "Order" section of the Administrative Order by Consent (AOC) Docket No. V-W-94-C-212, effective November 17, 1993, regarding a Removal Action for the Nease Chemical Site in Salem, Ohio. The report summarizes the major activities during the month along with investigation results and any problems encountered on the project. Activities planned for next month are also presented.

2.0 SUMMARY OF ACTIVITIES PERFORMED

2.1 PROJECT ACTIVITY

The activities that were initiated and/or completed during this month are described below. Activities were performed in accordance with the Removal Action AOC.

The agencies and ROC discussed modifications of the existing onsite groundwater treatment system to optimize the protection against spills. ROC summarized the modifications agreed by the parties in a letter to the agencies. The contractor bids were received and will be awarded.

2.2 WORK PLAN PREPARATION/REPORTS

No work plans/reports were submitted this period.

2.3 FIELDWORK

2.3.1 SITE INSPECTIONS

The results of the monthly site inspection carried out at the site on February 23, 2007 are shown in Attachment 1.

2.3.2 MONTHLY WATER LEVEL MEASUREMENTS

The next water level measurements will be conducted in March 2007.

2.3.3 TREATMENT PLANT OPERATION

The treatment plant operated mostly normal throughout the month.

2.4.1.1 **MEETINGS**

None

3.0 VARIATIONS FROM THE APPROVED REMOVAL ACTION WORK PLAN

None

4.0 RESULTS OF INSPECTIONS, ENVIRONMENTAL SAMPLING, TESTS AND ANALYSES

Water monitoring samples were collected from the treatment plant on February 6 and (see Attachments 2 and 3). The next Acute/Chronic Toxicity Evaluations was conducted from February 20 to 24, 2007 and from February 20 to 27, 2007 (see Attachment 4 and 5).

5.0 PROJECT SCHEDULE

The updated Work Plan schedule identifies completion and target dates for project activities.

6.0 DIFFICULTIES ENCOUNTERED AND ACTION TAKEN TO RESOLVE PROBLEMS

None

7.0 PERSONNEL CHANGES

No personnel changes occurred during month

8.0 TYPES AND QUANTITIES OF REMOVED MATERIALS

For the period from February 1 through 28, 2007 the following material was removed:

- 15,600 gallons of leachate and/or backwash water were disposed off-site at a licensed treatment facility.
- Approximately 106,439 gallons were pumped from Leachate Collection System 1 (LCS-1) (total for LCS-1 =19,788,332 gal).
- Approximately 13,948 gallons were pumped from Leachate Collection System 2 (LCS-2) (total for LCS-2 = 1,543,355 gal).
- No water was pumped from Pond 1 (total for the pond = 1,021,138/ gallons).
- Approximately 19 pounds of organic compounds were removed during pumping (estimate based on average VOC/SVOC concentrations for each source).

9.0 ANTICIPATED PROJECT ACTIVITIES FOR MARCH 2007

Removal Action activities scheduled for the upcoming month include on-going implementation of the approved Removal Action Work Plan involving:

- Collection of groundwater from the existing collection systems LCS-1, LCS-2 and Pond 1.
- Implementation of planned treatment plant modifications
- Monthly Progress Report for February 2007

031907

TABLE 1 NEASE CHEMICAL SITE, SALEM, OHIO REMOVAL ACTION SCHEDULE

DATE	TASK/ACTIVITY/DELIVERABLE/MILESTONE
	Documentation of the Site Activities through July 31, 2004 can be reviewed in the July 2004 Monthly Progress Report
September 9, 2004	Submit Monthly Progress Report
October 8, 2004	Submit Monthly Progress Report
November 10, 2004	Submit Monthly Progress Report
December 10, 2004	Submit Monthly Progress Report
January 10, 2005	Submit Monthly Progress Report
February 10, 2005	Submit Monthly Progress Report
March 4, 2005	Submit Monthly Progress Report
April 8, 2005	Submit Monthly Progress Report
May 9, 2005	Submit Monthly Progress Report
June 9, 2005	Submit Monthly progress Report
July 8, 2005	Submit Monthly Progress Report
August 10, 2005	Submit Monthly Progress Report
September 9, 2005	Submit Monthly Progress Report
October 10, 2005	Submit Monthly Progress Report
November 9, 2005	Submit Monthly Progress Report
December 8, 2005	Submit Monthly Progress Report
January 9, 2006	Submit Monthly Progress Report
February 8, 2006	Submit Monthly Progress Report
March 15, 2006	Submit Monthly Progress Report
April 10, 2006	Submit Monthly Progress Report
May 8, 2006	Submit Monthly Progress Report
June 8, 2006	Submit Monthly Progress Report
July 10, 2006	Submit Monthly Progress Report
August 4, 2006	Submit Monthly Progress Report
September 8, 2006	Submit Monthly Progress Report
October 8, 2006	Submit Monthly Progress Report
November 6, 2006	Submit Monthly Progress Report
December 12, 2006	Submit Monthly Progress Report
January 8, 2007	Submit Monthly Progress Report
February 6, 2007	Submit Monthly Progress Report
March 19, 2007	Submit Monthly Progress Report

ATTACHMENT 1

RESULTS OF MONTHLY SITE INSPECTION NEASE CHEMICAL SITE, SALEM, OHIO FEBRUARY 2007

SITE INSPECTION FORM RUETGERS-NEASE CORPORATION Nease Site, Salem, Ohio

Date of Inspection: 2-23-07			
Entry Time: 930	Exit Time:	1330	
Weather: <u>Lτ. Snow</u> 20°			
Inspector's Name: DENNIS L. LANE			
Inspector's Company: Howells	s and Baird, Inc.		

INSPECTION RESULTS

SPECIFIC OBSERVATIONS: Structures

(Responses: S = Satisfactory U = Unsatisfactory Yes/No Levels Measured in Feet, N/A = Not Applicable)

	Pump	Quick Connect			Visible Leakage
Leachate Collection System 1 (LCS-1)	S	S	9.04	N/A	No
Leachate Collection System 2 (LCS-2)	S	S	9.50	NA	No
Pond 1 Pumphouse	S	S	8.59	N/A	No
Pond 1 Berm	N/a	N/A	N/A	No	No
Pond 2 Embankment	N/A	N/A	N/A	No	No
Exclusion Area A Embankment	N/A	NA	N/A	No	No
Storage Tank	NA	Ś	3.76	N/A	No
Other (specify)					

SPECIFIC OBSERVATIONS:

Sediment Barriers

Condition of Sediment Barriers

Barrier ID	Fabric Intact?	By Passing Evident?	Is Maintenance Necessary?
Sediment Control Structure 1	YES	No	No
Sediment Control Structure 2	YES	No	No
Fabric Barrier 2	YES	No	No
Fabric Barrier 3	YES	No	No
Fabric Barrier 4	YES	No	No
Fabric Barrier 5	YES	No	No
Fabric Barrier 8	YES	No	No
Fabric Barrier 9	YES	No	No
Fabric Barrier 10	YES	No	No
Rock Barrier 1	YES	No	No
Rock Barrier 2	YES	No	No
Pond 7 - North	YES	No	No
Pond 7 - South	YES	No	No

SPECIFIC OBSERVATIONS:

Seeps (if present, use more forms, as necessary)

Seep:ID (yr-month-#)	Located on Map.	Areal Extent	-Magnitude (flow?-ponding?)
94-7-1	YES	20	NON-FLOWING SEEP
96-8-2	YES	20	NON-FLOWING SEEP

Note Seep ID # equal the "nth' observed seep during the yr-month in question

ADDITIONAL OBSERVATION OR REMARKS:	
Inspector's Name: DENNIS L. LANE	
Inspector's Signature: Lennis X- Lane	
Date: 2-2307	

ATTACHMENT 2

WATER SAMPLING RESULTS – FEBRUARY 6, 2007 NEASE CHEMICAL SITE, SALEM, OHIO

STL North Canton 4101 Shuffel Drive NW North Canton, OH 44720

Tel: 330 497 9396 Fax. 330 497 0772 www.stl-inc.com

ANALYTICAL REPORT

FEB 2 1 2007

SALEM, OHIO SITE

Lot #: A7B070147

Dr. Rainer Domalski

Rutgers Organics Corporation 201 Struble Road State College, PA 16801

SEVERN TRENT LABORATORIES, INC.

Kenneth J. Kuzior Project Manager

February 19, 2007

ŧ

CASE NARRATIVE

A7B070147

The following report contains the analytical results for two water samples submitted to STL North Canton by Rutgers Organics Corporation from the Salem, Ohio Site. The samples were received February 07, 2007, according to documented sample acceptance procedures.

STL utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Dr. Rainer Domalski on February 16, 2007. A summary of QC data for these analyses is included at the back of the report.

STL North Canton attests to the validity of the laboratory data generated by STL facilities reported herein. All analyses performed by STL facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. STL's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

If you have any questions, please call the Project Manager, Kenneth J. Kuzior, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT." The total number of pages in this report is 18.

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The temperature of the cooler upon sample receipt was 0.8°C.

GENERAL CHEMISTRY

The analytical results met the requirements of the laboratory's QA/QC program.

EXECUTIVE SUMMARY - Detection Highlights

A7B070147

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
INFLUENT 2-6-07 02/06/07 13:00 001				
Nitrite as N	0.15	0.10	mg/L	MCAWW 300.0A
OUTFALL 2-6-07 02/06/07 13:00 002				
Total phosphorus Nitrite as N	0.1 0.14	0.1	mg/L mg/L	MCAWW 365.2 MCAWW 300.0A

ANALYTICAL METHODS SUMMARY

A7B070147

PARAMETER	ANALYTICAL METHOD
Ammonia Nitrogen	MCAWW 350.2
Nitrate as N	MCAWW 300.0A
Nitrite as N	MCAWW 300.0A
Total phosphorus	MCAWW 365.2

References:

MCAWW

"Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.

SAMPLE SUMMARY

A7B070147

WO # SAMPLI	E# CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
JN2PK 001 JN2PM 002	INFLUENT 2-6-07 OUTFALL 2-6-07	02/06/07 02/06/07	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages
- All calculations are performed before rounding to avoid round-off errors in calculated results
- Results noted as "ND" were not detected at or above the stated limit
- This report must not be reproduced, except in full, without the written approval of the laboratory
- Results for the following parameters are never reported on a dry weight basis color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight

Client Sample ID: INFLUENT 2-6-07

General Chemistry

Lot-Sample #...: A7B070147-001 Work Order #...: JN2PK Matrix..... WG

Date Sampled...: 02/06/07 13:00 Date Received..: 02/07/07

PARAMETER	RESULT	RL	UNITS	METHOL)	PREPARATION- ANALYSIS DATE	PREP BATCH #
Nitrate as N	ND	0.10	mg/L	MCAWW	300.0A	02/07/07	7039034
	Dil	ution Fact	or: 1				
Nitrite as N	0.15	0.10	mg/L	MCAWW	300.0A	02/07/07	7039035
	D1]	ution Fact	or: 1				
Nitrogen, as Ammonia	ND	2.0	mq/L	MCAWW	350.2	02/16/07	7047242
	Dil	ution Facto	or: 1				
Total phosphorus	ND	0.1	mg/L	MCAWW	365.2	02/12/07	7044140
	Dil	ution Fact	or: 1				

Client Sample ID: OUTFALL 2-6-07

General Chemistry

Lot-Sample #...: A7B070147-002 Work Order #...: JN2PM Matrix...... WG

Date Sampled...: 02/06/07 13:00 Date Received..: 02/07/07

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Nitrate as N	ND Dil	0.10 ution Facto	mg/L or: 1	MCAWW 300.0A	02/07/07	7039034
Nitrite as N	0.14	0.10 ution Facto	mg/L or: 1	MCAWW 300.0A	02/07/07	7039035
Nitrogen, as Ammonia		2.0 ution Facto	mg/L or. 1	MCAWW 350.2	02/16/07	7047242
Total phosphorus	0.1	0.1	mg/L or 1	MCAWW 365.2	02/15/07	7046425

Chain of Custody Record

Severn Trent Laboratories, Inc.

STL-4124 (0901)																									
Client P. A - 7		Project	Mana	ger D	, _	_	7				_						Date	,				70	hain of Custody		
NUTGERS URGANICS LORP		Telephi	<u> IR .</u>	RA	NE	<u>Code</u>	<u> </u>	MA	LS	KL							1.05	Numb				_		1998	
City _ Client RUTGERS ORGANICS GRP Address 201 STRUBLE ROAD City _ State Zip C		(814)	23	1-9	•		•				<u>8-</u> ,	<u>538</u>	73			····	L						Page	· of 1	
STATE COLLEGE PA. 1	ode 16801	She Co		y Li	INE		Lab	Cont	tact				_	ଧ .			lysis spac								
Project Name and Location (State) SALEM OHIO SITE		Carner	Wayl	hill N ur	nber									di Terr									Specia	l Instructions	c/
Contract/Purchase Order/Quote No.				Ма	trix					taıne erva			7	NITERITE INITEITE										ons of Recei	
Sample I.D No and Description (Containers for each sample may be combined on one line)	Dale	Time	**	Aquecus	Sod		Unpres	H2S04	HNO3	Ž	NBOH	ZnAc/ NaOH		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									·		
INFLUENT 2-6-07	2-6-07	1300		X			X																		
	2-6-07	1300	_	X.	-	_	X				_		$\perp \downarrow$	Ц_			_			\dashv		_	ļ		
INFLUENT 2-6-07	2-6-07	1300		X				X			_		_	11						_				·	
OUTFALL 2-6-07	2-6-07	1300		X	_	_		X			_		\bot	1]_]	-				\perp	_	_			
		!		-	+-	┼		\vdash							\dashv	-		+-		_	_	-			
			Н			-			_	\square			+	-		\dashv	+	+	-	_		+	 		
					+	-					\dashv	\vdash		+	\vdash	\dashv	-	-	-	+		+-	-		
			H		+	+					\dashv	-	+	+	H	+	+	+	\vdash	-		+			
				-	+	-	-	$\left \cdot \right $			\dashv	\vdash	+		\vdash	\dashv	+	+-	$\left \cdot \right $	-	-	+-	-		
				_	╁	-	\vdash				\neg	$\vdash \uparrow$	+	+		+	+	+	\vdash	\dashv	+	+	 		
					+	1		\vdash			-	+	+	+		\dashv	+	+		\dashv	+	+	ļ		
— · · · · · · · · · · · · · · · · · · ·	Poison B	☐ Unknowi	- 1	arnple Retu	•		1	K 0						chive	For _	L	Mo	nths			y be a in 1 me		ed if samples a	e retained	
Turn Around Time Required 24 Hours 48 Hours 7 Days 14 Day	ys 🔲 21 Day	rs 🗆 Oti	her					100	Heq	uiren	ients	(Ѕрва	city)												,
I Relinquished By	·	Date 2-6			Time /3			1 R	eco.	yed E	37			•									Date 20107	Time) = 4
DENNY LANE 2 Relinquished By		Date	-0		Time	<i>v</i>				ved E													Dale	Time	<u>.</u>
3 Relinquished By		Date			Time			3 R	lecei	ved 6	Эу							·					Date	Time	÷
Comments																									North
Comments				_																					
DISTRIBUTION WHITE Returned to Client with Report.	CANARY - Stays	with the Sam	ple.	PINK -	Field	Сору																	· · · · · · · · · · · · · · · · · · ·		S.

ATTACHMENT 3

WATER SAMPLING RESULTS – FEBRUARY 20, 2007 NEASE CHEMICAL SITE, SALEM, OHIO

STL North Canton 4101 Shuffel Drive NW North Canton, OH 44720

Tel: 330 497 9396 Fax: 330 497 0772 www stl-inc.com

ANALYTICAL REPORT

SALEM, OHIO SITE

Lot #: A7B210221

Dr. Rainer Domalski

Rutgers Organics Corporation 201 Struble Road State College, PA 16801

SEVERN TRENT LABORATORIES, INC.

Kenneth J. Kuzior

Project Manager

March 15, 2007

CASE NARRATIVE

A7B210221

The following report contains the analytical results for two air samples, three water samples and one quality control sample submitted to STL North Canton by Rutgers Organics Corporation from the Salem, Ohio Site. The samples were received February 21, 2007, according to documented sample acceptance procedures.

The Air, TO-14A Volatile Organics analysis was performed at the STL Knoxville laboratory.

The Pests (MPK) analysis was subcontracted to Exygen Research. A copy of their report has been provided.

STL utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Dr. Rainer Domalski on March 05, 2007. A summary of QC data for these analyses is included at the back of the report.

STL North Canton attests to the validity of the laboratory data generated by STL facilities reported herein. All analyses performed by STL facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. STL's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

If you have any questions, please call the Project Manager, Kenneth J. Kuzior, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT." The total number of pages in this report is 70.

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The temperatures of the coolers upon sample receipt were 1.7 and 2.1°C.

CASE NARRATIVE (continued)

GC/MS VOLATILES

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

GC/MS SEMIVOLATILES

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

Sample(s) OUTFALL 2-20-07 and the LCS associated with batch(es) 7052428 had surrogates that were double spiked. These recoveries were adjusted accordingly.

PESTICIDES-8081

There were no client requested Matrix Spike/Matrix Spike Duplicate (MS/MSD) samples in batch(es) 7053333. Therefore, the laboratory has included a Laboratory Control Sample Duplicate (LCSD) in the QC batch. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system.

METALS

The matrix spike/matrix spike duplicate(s) for OUTFALL 2-20-07 had RPD's and recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

CASE NARRATIVE (continued)

GENERAL CHEMISTRY

The analytical results met the requirements of the laboratory's QA/QC program.

ANALYTICAL METHODS SUMMARY

A7B210221

PARAMETE	R	ANALYTICAL METHOD
pH Aqueo		SW846 9040B
Ammonia		MCAWW 350.2
	cal Oxygen Demand	MCAWW 405.1
	Oxygen Demand	MCAWW 410.4
Filterab	le Residue (TDS)	MCAWW 160.1
Free Cya	nide	SM18 4500-CN-I
ICP-MS (6020)	SW846 6020
Mercury	in Liquid Waste (Manual Cold-Vapor)	SW846 7470A
N-Hexane	Extractable Material (1664A)	CFR136A 1664A HEM
Non-Filt	erable Residue (TSS)	MCAWW 160.2
-	lorine Pesticides	SW846 8081A
Semivola	tile Organic Compounds by GC/MS	SW846 8270C
	ganic Carbon	SW846 9060
	Organics by GC/MS	SW846 8260B
Volatile	Organics by TO14 A (Low Level)	EPA-2 TO-14A
Reference	es:	
CFR136A	"Methods for Organic Chemical Analysis Industrial Wastewater", 40CFR, Part 13 October 26, 1984 and subsequent revisi	36, Appendix A,
EPA-2	"Compendium of Methods for the Determi Organic Compounds in Ambient Air", EPA January 1999.	
MCAWW	"Methods for Chemical Analysis of Wate EPA-600/4-79-020, March 1983 and subse	
SM18	"Standard Methods for the Examination Wastewater", 18th Edition, 1992.	of Water and
SW846	"Test Methods for Evaluating Solid Was Methods", Third Edition, November 1986	•

SAMPLE SUMMARY

A7B210221

<u>WO #</u>	SAMPLE	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
JPR6Q	001	INFLUENT 2-20-07	02/20/07	13:00
JPR67	002	LGAC 2-3-2-20-07	02/20/07	13:00
JPR7F	003	OUTFALL 2-20-07	02/20/07	13:00
JPR72	004	TRIP BLANK	02/20/07	
JPR73	005	AGAC 1-2-2-20-07	02/20/07	13:00
JPR8G	006	AGAC-F-2-20-07	02/20/07	13:00

NOTE(S):

⁻ The analytical results of the samples listed above are presented on the following pages

⁻ All calculations are performed before rounding to avoid round-off errors in calculated results

⁻ Results noted as "ND" were not detected at or above the stated limit.

⁻ This report must not be reproduced, except in full, without the written approval of the laboratory

⁻ Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight

Client Sample ID: INFLUENT 2-20-07

General Chemistry

Lot-Sample #...: A7B210221-001 Work Order #...: JPR6Q Matrix.....: WG

pate Sampled...: 02/20/07 13:00 Date Received..: 02/21/07

PARAMETER	RESULT _	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #				
pH (liquid)	6.9		No Units	SW846 9040B	02/21/07	7053027				
Dilution Factor: 1										
Total Dissolved Solids	510	10	mg/L	MCAWW 160.1	02/23-02/26/07	7054293				
	Dilution Factor: 1									
Total Suspended Solids	90	4.0	mg/L	MCAWW 160.2	02/22/07	7053113				

Dilution Factor: 1

Client Sample ID: LGAC 2-3-2-20-07

GC/MS Volatiles

Lot-Sample #...: A7B210221-002 Work Order #...: JPR671AF Matrix.....: WG

Date Sampled...: 02/20/07 13:00 Date Received..: 02/21/07 Prep Date....: 02/23/07 Analysis Date..: 02/23/07

Prep Batch #...: 7057069

Dilution Factor: 1 Method.....: SW846 8260B

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	10	ug/L
Benzene	ND	1.0	ug/L
Bromobenzene	ND	1.0	ug/L
Bromochloromethane	ИD	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
2-Butanone	ИD	10	ug/L
n-Butylbenzene	ND	1.0	${\tt ug/L}$
sec-Butylbenzene	ND	1.0	ug/L
tert-Butylbenzene	ND	1.0	ug/L
Carbon tetrachloride	ИD	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
Chloroethane	ND	1.0	${ t ug/L}$
Chloroform	ND	1.0	${\tt ug/L}$
Chloromethane	ND	1.0	ug/L
2-Chlorotoluene	ND	1.0	ug/L
4-Chlorotoluene	ND	1.0	ug/L
1,2-Dibromoethane	ND	1.0	ug/L
Dibromomethane	ND	1.0	$\mathtt{ug/L}$
l,2-Dichlorobenzene	0.22 J	1.0	ug/L
l,3-Dichlorobenzene	ND	1.0	ug/L
l,4-Dichlorobenzene	ND	1.0	${\tt ug/L}$
Dichlorodifluoromethane	ND	1.0	${\tt ug/L}$
l,1-Dichloroethane	ND	1.0	${ t ug/L}$
l,2-Dichloroethane	ND	1.0	${ t ug/L}$
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
l,1-Dichloroethene	ND	1.0	${\tt ug/L}$
l,2-Dichloropropane	ND	1.0	ug/L
l,3-Dichloropropane	ND	1.0	${ t ug/L}$
2,2-Dichloropropane	ND	1.0	${ t ug/L}$
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
l,1-Dichloropropene	ND	1.0	${ t ug/L}$
Ethylbenzene	ND	1.0	${ t ug/L}$
Isopropylbenzene	ND	1.0	ug/L
o-Isopropyltoluene	ND	1.0	ug/L

(Continued on next page)

Client Sample ID: LGAC 2-3-2-20-07

GC/MS Volatiles

Lot-Sample #...: A7B210221-002 Work Order #...: JPR671AF Matrix...... WG

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Methylene chloride	ND ND	1.0	ug/L
n-Propylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
1,2,4-Trimethylbenzene	ND	1.0	ug/L
1,3,5-Trimethylbenzene	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
o-Xylene	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	85	(73 - 12	2)
1,2-Dichloroethane-d4	80	(61 - 12	8)
Toluene-d8	87	(76 - 11	0)
4-Bromofluorobenzene	87	(74 - 11	6)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: LGAC 2-3-2-20-07

General Chemistry

Lot-Sample #...: A7B210221-002 Work Order #...: JPR67
Date Sampled...: 02/20/07 13:00 Date Received..: 02/21/07 Matrix..... WG

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #				
pH (liquid)	7.9	ition Facto	No Units	SW846 9040B	02/21/07	7053027				
Total Dissolved Solids	510	10	mg/L	MCAWW 160.1	02/23-02/26/07	7054293				
	Dilution Factor: 1									
Total Suspended Solids	ND	4.0	mg/L	MCAWW 160.2	02/22/07	7053113				

Dilution Factor: 1

Client Sample ID: OUTFALL 2-20-07

GC/MS Volatiles

Lot-Sample #...: A7B210221-003 Work Order #...: JPR7F1AN Matrix.....: WG

Date Sampled...: 02/20/07 13:00 Date Received..: 02/21/07 Prep Date....: 02/23/07 Analysis Date..: 02/23/07

Prep Batch #...: 7057069

Dilution Factor: 1 Method....: SW846 8260B

RESULT			REPORTIN	IG
No	PARAMETER	RESULT	LIMIT	UNITS
Bromobenzene	Acetone	ND	10	ug/L
Bromochloromethane	Benzene	ND	1.0	ug/L
Bromodichloromethane	Bromobenzene	ND	1.0	ug/L
Bromoform	Bromochloromethane	ND	1.0	ug/L
Bromomethane	Bromodichloromethane	ND	1.0	ug/L
2-Butanome	Bromoform	ND	1.0	ug/L
n-Butylbenzene ND 1.0 ug/L sec-Butylbenzene ND 1.0 ug/L tert-Butylbenzene ND 1.0 ug/L Carbon tetrachloride ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Dibromochloromethane ND 1.0 ug/L Chlorotethane ND 1.0 ug/L Chlorotoform ND 1.0 ug/L Chlorotoluene ND 1.0 ug/L 2-Chlorotoluene ND 1.0 ug/L 4-Chlorotoluene ND 1.0 ug/L 1,2-Dibromoethane ND 1.0 ug/L 1,2-Dibromoethane ND 1.0 ug/L 1,2-Dichlorobenzene ND 1.0 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethene ND	Bromomethane	ND	1.0	ug/L
sec-Butylbenzene ND 1.0 ug/L tert-Butylbenzene ND 1.0 ug/L Carbon tetrachloride ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Dibromochloromethane ND 1.0 ug/L Chlorotoluene ND 1.0 ug/L Chloroform ND 1.0 ug/L Chlorotoluene ND 1.0 ug/L 4-Chlorotoluene ND 1.0 ug/L 1,2-Dibromoethane ND 1.0 ug/L 4-Chlorotoluene ND 1.0 ug/L 1,2-Dibromoethane ND 1.0 ug/L 1,2-Dibromoethane ND 1.0 ug/L 1,3-Dichlorobenzene ND 1.0 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethene ND	2-Butanone	ND	10	ug/L
tert-Butylbenzene ND 1.0 ug/L Carbon tetrachloride ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Dibromochloromethane ND 1.0 ug/L Chloroethane ND 1.0 ug/L Chloroform ND 1.0 ug/L Chloromethane ND 1.0 ug/L 2-Chlorotoluene ND 1.0 ug/L 4-Chlorotoluene ND 1.0 ug/L 1,2-Dibromoethane ND 1.0 ug/L 1,2-Dibromoethane ND 1.0 ug/L 1,2-Dichlorobenzene ND 1.0 ug/L 1,3-Dichlorobenzene ND 1.0 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloropethene ND <td>n-Butylbenzene</td> <td>ND</td> <td>1.0</td> <td>ug/L</td>	n-Butylbenzene	ND	1.0	ug/L
Carbon tetrachloride ND 1.0 ug/L Chlorobenzene ND 1.0 ug/L Dibromochloromethane ND 1.0 ug/L Chloroethane ND 1.0 ug/L Chloroform ND 1.0 ug/L Chloromethane ND 1.0 ug/L 2-Chlorotoluene ND 1.0 ug/L 4-Chlorotoluene ND 1.0 ug/L 4-Chlorotoluene ND 1.0 ug/L 1,2-Dibromoethane ND 1.0 ug/L 1,2-Dibromoethane ND 1.0 ug/L 1,3-Dichlorobenzene ND 1.0 ug/L 1,3-Dichlorobenzene ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND	sec-Butylbenzene	ND	1.0	ug/L
Chlorobenzene ND 1.0 ug/L Dibromochloromethane ND 1.0 ug/L Chloroethane ND 1.0 ug/L Chloroform ND 1.0 ug/L Chlorotoluene ND 1.0 ug/L 2-Chlorotoluene ND 1.0 ug/L 4-Chlorotoluene ND 1.0 ug/L 1,2-Dibromoethane ND 1.0 ug/L 1,2-Dibromoethane ND 1.0 ug/L Dibromomethane ND 1.0 ug/L 1,2-Dichlorobenzene ND 1.0 ug/L 1,2-Dichlorobenzene ND 1.0 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND	tert-Butylbenzene	ND	1.0	ug/L
Dibromochloromethane ND 1.0 ug/L Chloroethane ND 1.0 ug/L Chloroform ND 1.0 ug/L Chloromethane ND 1.0 ug/L 2-Chlorotoluene ND 1.0 ug/L 4-Chlorotoluene ND 1.0 ug/L 1,2-Dibromoethane ND 1.0 ug/L Dibromomethane ND 1.0 ug/L Dibromomethane ND 1.0 ug/L 1,2-Dichlorobenzene ND 1.0 ug/L 1,3-Dichlorobenzene ND 1.0 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,2-Dichloropropane ND	Carbon tetrachloride	ND	1.0	ug/L
Chloroethane ND 1.0 ug/L Chloroform ND 1.0 ug/L Chloromethane ND 1.0 ug/L 2-Chlorotoluene ND 1.0 ug/L 4-Chlorotoluene ND 1.0 ug/L 1,2-Dibromoethane ND 1.0 ug/L 1,2-Dibromoethane ND 1.0 ug/L 1,2-Dichlorobenzene ND 1.0 ug/L 1,3-Dichlorobenzene ND 1.0 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane N	Chlorobenzene	ND	1.0	ug/L
Chloroform ND 1.0 ug/L Chloromethane ND 1.0 ug/L 2-Chlorotoluene ND 1.0 ug/L 4-Chlorotoluene ND 1.0 ug/L 1,2-Dibromoethane ND 1.0 ug/L 1,2-Dibromoethane ND 1.0 ug/L 1,2-Dichlorobenzene ND 1.0 ug/L 1,3-Dichlorobenzene ND 1.0 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L 1,1-Dichlorobenzene ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropene	Dibromochloromethane	ND		ug/L
Chloromethane ND 1.0 ug/L 2-Chlorotoluene ND 1.0 ug/L 4-Chlorotoluene ND 1.0 ug/L 1,2-Dibromoethane ND 1.0 ug/L Dibromomethane ND 1.0 ug/L 1,2-Dichlorobenzene ND 1.0 ug/L 1,3-Dichlorobenzene ND 1.0 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene </td <td>Chloroethane</td> <td>ИD</td> <td>1.0</td> <td>ug/L</td>	Chloroethane	ИD	1.0	ug/L
2-Chlorotoluene ND 1.0 ug/L 4-Chlorotoluene ND 1.0 ug/L 1,2-Dibromoethane ND 1.0 ug/L Dibromomethane ND 1.0 ug/L 1,2-Dichlorobenzene ND 1.0 ug/L 1,3-Dichlorobenzene ND 1.0 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L Dichlorodifluoromethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L cis-1,2-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropen	Chloroform	ND	1.0	ug/L
4-Chlorotoluene ND 1.0 ug/L 1,2-Dibromoethane ND 1.0 ug/L Dibromomethane ND 1.0 ug/L 1,2-Dichlorobenzene ND 1.0 ug/L 1,3-Dichlorobenzene ND 1.0 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L Dichlorodifluoromethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L cis-1,2-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L 1,1-Dichloropr	Chloromethane	ND	1.0	ug/L
1,2-Dibromoethane ND 1.0 ug/L Dibromomethane ND 1.0 ug/L 1,2-Dichlorobenzene 0.20 J 1.0 ug/L 1,3-Dichlorobenzene ND 1.0 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L Dichlorodifluoromethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L cis-1,2-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L 1,1-Di	2-Chlorotoluene	ND	1.0	ug/L
Dibromomethane ND 1.0 ug/L 1,2-Dichlorobenzene 0.20 J 1.0 ug/L 1,3-Dichlorobenzene ND 1.0 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L Dichlorodifluoromethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L	4-Chlorotoluene	ND	1.0	-
1,2-Dichlorobenzene 0.20 J 1.0 ug/L 1,3-Dichlorobenzene ND 1.0 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L Dichlorodifluoromethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	1,2-Dibromoethane	ND	1.0	ug/L
1,3-Dichlorobenzene ND 1.0 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L Dichlorodifluoromethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L cis-1,2-Dichloroethene ND 1.0 ug/L trans-1,2-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L Sthylbenzene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	Dibromomethane	ND	1.0	ug/L
1,4-Dichlorobenzene ND 1.0 ug/L Dichlorodifluoromethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L cis-1,2-Dichloroethene ND 1.0 ug/L trans-1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	1,2-Dichlorobenzene	0.20 J	1.0	ug/L
Dichlorodifluoromethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L cis-1,2-Dichloroethene ND 1.0 ug/L trans-1,2-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	1,3-Dichlorobenzene	ND	1.0	-
1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L cis-1,2-Dichloroethene ND 1.0 ug/L trans-1,2-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	1,4-Dichlorobenzene	ND	1.0	•
1,2-Dichloroethane ND 1.0 ug/L cis-1,2-Dichloroethene ND 1.0 ug/L trans-1,2-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	Dichlorodifluoromethane	ND	1.0	ug/L
cis-1,2-Dichloroethene ND 1.0 ug/L trans-1,2-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	1,1-Dichloroethane	ИD	1.0	-
trans-1,2-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	cis-1,2-Dichloroethene	ND	1.0	-
1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	trans-1,2-Dichloroethene	ND	1.0	•
1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	1,1-Dichloroethene	ND		-
2,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L ug/L	1,3-Dichloropropane	ND	1.0	-
trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	2,2-Dichloropropane	ИD		ug/L
1,1-DichloropropeneND1.0ug/LEthylbenzeneND1.0ug/LIsopropylbenzeneND1.0ug/L	cis-1,3-Dichloropropene	ND		-
Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	trans-1,3-Dichloropropene	ND		-
Isopropylbenzene ND 1.0 ug/L		ND		-
		ND	1.0	=
p-Isopropyltoluene ND 1.0 ug/L	Isopropylbenzene	ND	1.0	-
	p-Isopropyltoluene	ND	1.0	ug/L

(Continued on next page)

Client Sample ID: OUTFALL 2-20-07

GC/MS Volatiles

Lot-Sample #...: A7B210221-003 Work Order #...: JPR7F1AN Matrix.....: WG

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Methylene chloride	ND	1.0	ug/L
n-Propylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
,1,1,2-Tetrachloroethane	ND	1.0	ug/L
,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Coluene	ND	1.0	ug/L
,1,1-Trichloroethane	ND	1.0	ug/L
,1,2-Trichloroethane	ND	1.0	ug/L
richloroethene	ND	1.0	ug/L
richlorofluoromethane	ND	1.0	ug/L
,2,3-Trichloropropane	ND	1.0	ug/L
,2,4-Trimethylbenzene	ND	1.0	ug/L
3,5-Trimethylbenzene	ND	1.0	ug/L
inyl chloride	ND	1.0	ug/L
-Xylene & p-Xylene	ND	2.0	ug/L
-Xylene	ND	1.0	ug/L
	PERCENT	RECOVERY	
JRROGATE	RECOVERY	LIMITS	
ibromofluoromethane	87	(73 - 12	2)
2-Dichloroethane-d4	80	(61 - 12	8)
luene-d8	87	(76 - 11	0)
-Bromofluorobenzene	87	(74 - 11	6)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: OUTFALL 2-20-07

GC/MS Semivolatiles

Lot-Sample #:	A7B210221-003	Work Order #:	JPR7F1AM	Matrix WG
Date Sampled:	02/20/07 13:00	Date Received:	02/21/07	
Prep Date:	02/21/07	Analysis Date:	02/27/07	

Prep Date....: 02/21/07 Prep Batch #...: 7052428

Dilution Factor: 1 Method..... SW846 8270C

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Anthracene	ND	10	ug/L
Benzo(a)anthracene	ND	10	ug/L
Benzo(b) fluoranthene	ND	10	ug/L
Benzo(k) fluoranthene	ND	10	ug/L
Benzo(ghi)perylene	ND	10	ug/L
Benzo(a)pyrene	ND	10	ug/L
Butyl benzyl phthalate	ND	10	ug/L
Chrysene	ND	10	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Di-n-butyl phthalate	0.68 J,B	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
Dimethyl phthalate	ND	10	ug/L
Fluorene	ND	10	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
2-Methylnaphthalene	ND	10	ug/L
4-Methylphenol	ND	10	ug/L
Naphthalene	ND	10	ug/L
Phenanthrene	ND	10	ug/L
Phenol	ND	10	ug/L
Pyrene	ND	10	ug/L
Phenyl sulfone	ND	2.0	ug/L
3,4-Dichloronitrobenzene	ND	10	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Nitrobenzene-d5	69	(27 - 111)	
2-Fluorobiphenyl	61	(28 - 110)	
Terphenyl-d14	72	(37 - 119)	
Phenol-d5	55	(10 - 110)	
2-Fluorophenol	61	(10 - 110)	
2,4,6-Tribromophenol	57	(22 - 120)	

NOTE(S):

J Estimated result Result is less than RL.

B Method blank contamination The associated method blank contains the target analyte at a reportable level.

Client Sample ID: OUTFALL 2-20-07

GC Semivolatiles

Lot-Sample #: Date Sampled:				Matrix WG
Prep Date: Prep Batch #:	02/22/07	Analysis Date:		
Dilution Factor:		Method:	SW846 8081	A
			REPORTING	
PARAMETER		RESULT	LIMIT	UNITS
Methoxychlor		ND	0.10	ug/L
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Tetrachloro-m-xyl	ene	44	(39 - 130)	
	_		440 4471	

(10 - 147)

48

Decachlorobiphenyl

Client Sample ID: OUTFALL 2-20-07

TOTAL Metals

Lot-Sample #...: A7B210221~003 Matrix....: WG

Date Sampled...: 02/20/07 13:00 Date Received..: 02/21/07

PARAMETER	RESULT	REPORTING LIMIT	G UNITS	метно	ח	PREPARATION- ANALYSIS DATE	WORK ORDER #
THI THE							3113211 -
Prep Batch # Aluminum	: 7053017 0.050	0.050 Dilution Fact	mg/L .or: 1	SW846	6020	02/22-02/28/07	JPR7F1AP
Antimony	ND	0.0020 Dilution Fact	mg/L or: 1	SW846	6020	02/22-02/28/07	JPR7F1AQ
Arsenic	0.013	0.0010 Dilution Fact	mg/L or: 1	SW846	6020	02/22-02/28/07	JPR7F1AR
Beryllium	ND	0.0010 Dilution Fact	mg/L or: 1	SW846	6020	02/22-02/28/07	JPR7F1AT
Cadmium	ND	0.0010 Dilution Fact	mg/L or: 1	SW846	6020	02/22-02/28/07	JPR7F1AU
Chromium	ND	0.0020 Dilution Fact	mg/L or: 1	SW846	6020	02/22-02/28/07	JPR7F1AV
Copper	0.0023	0.0020 Dilution Fact	mg/L or: 1	SW846	6020	02/22-02/28/07	JPR7F1AW
Iron	0.66	0.020 Dilution Fact	mg/L or: 1	SW846	6020	02/22-02/28/07	JPR7F1AX
Lead	ND	0.0010 Dilution Fact	mg/L or: 1	SW846	6020	02/22-02/28/07	JPR7F1A0
Nickel	0.0051	0.0020 Dilution Fact	mg/L or: 1	SW846	6020	02/22~02/28/07	JPR7F1A1
Silver	ND	0.0010 Dilution Fact	mg/L or: 1	SW846	6020	02/22~02/28/07	JPR7F1A2
Thallium	ND	0.0010 Dilution Fact	mg/L or: 1	SW846	6020	02/22~02/28/07	JPR7F1A3
Zinc	ND	0.010 Dilution Fact	mg/L or: 1	SW846	6020	02/22-02/28/07	JPR7F1A4
Mercury	ND	0.00020 Dilution Fact	mg/L or: 1	SW846	7470A	02/22/07	JPR7F1A5

Client Sample ID: OUTFALL 2-20-07

General Chemistry

Lot-Sample #...: A7B210221-003 Work Order #...: JPR7F
Date Sampled...: 02/20/07 13:00 Date Received..: 02/21/07 Matrix..... WG

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
n-Hexane Extractable Material	ND	5.0	mg/L	CFR136A 1664A HEM	02/27/07	7058457
	I	Dilution Facto	or: 1			
pH (liquid)	8.0	Dilution Facto	No Units	SW846 9040B	02/21/07	7053027
Biochemical Oxygen Demand (BOD)	ND	2	mg/L	MCAWW 405.1	02/22-02/27/07	7053502
	Ε	Ollution Facto	or: 1			
Chemical Oxygen Demand (COD)	ND	20	mg/L	MCAWW 410.4	02/22/07	7053275
	D	ollution Facto	r: 1			
Cyanide (Free)	ND	0.010 Dilution Facto	mg/L r: 1	SM18 4500-CN-I	02/28/07	7059490
Nitrogen, as Ammonia		2.0 Dilution Facto	mg/L r: 1	MCAWW 350.2	02/22/07	7053271
Total Dissolved Solids	510	10	mg/L	MCAWW 160.1	02/23-02/26/07	7054293
	Ε	ollution Facto	r: 1			
Total Organic Carbon		1 Dilution Facto	mg/L r: 1	SW846 9060	03/02/07	7064125
Total Suspended Solids	ND	4.0	mg/L	MCAWW 160.2	02/22/07	7053113
	D	ilution Facto	r: 1			

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Matrix....: WQ Work Order #...: JPR721AA Lot-Sample #...: A7B210221-004

Date Received..: 02/21/07 Date Sampled...: 02/20/07 Prep Date....: 02/23/07
Prep Batch #...: 7057069 Analysis Date..: 02/23/07

Dilution Factor: 1 Method....: SW846 8260B

RESULT LIMIT UNITS			REPORTIN	G
Rectone 2.6 J 10	PARAMETER	RESULT		
Senzene ND				
Stromobenzene ND	Benzene		1.0	ug/L
### StromGothloromethane	Bromobenzene		1.0	-
### Stromodichloromethane ND 1.0 ug/L ### Stromoform ND 1.0 ug/L ### Stromomethane ND 1.			1.0	_
Stromoform ND			1.0	ug/L
ND			1.0	ug/L
Description	- · · · - - · · ·		1.0	-
ND	- · · · · · · · · · · · · · · · · · · ·		10	ug/L
ND			1.0	ug/L
Description			1.0	ug/L
Carbon tetrachloride	——————————————————————————————————————	ND	1.0	ug/L
Dibromochloromethane	Carbon tetrachloride		1.0	ug/L
Chloroethane Chloroform Chloroform ND 1.0 Ug/L Chloroform ND 1.0 Ug/L Chloromethane ND 1.0 Ug/L C-Chlorotoluene ND 1.0 Ug/L C-Chloromethane ND 1.0 Ug/L C-Chloroethane ND 1.0 Ug/L C-Chloropropane ND 1.0 U	Chlorobenzene	ND	1.0	ug/L
Chloroform ND 1.0 ug/L Chloromethane ND 1.0 ug/L 2-Chlorotoluene ND 1.0 ug/L 4-Chlorotoluene ND 1.0 ug/L 4-Chlorotoluene ND 1.0 ug/L 1,2-Dibromoethane ND 1.0 ug/L 1,2-Dichlorobenzene ND 1.0 ug/L 1,3-Dichlorobenzene ND 1.0 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L 1,4-Dichloromethane ND 1.0 ug/L 1,4-Dichloromethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,1-Dichloropropane ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 1,1-Dichloropropane ND 1.0 ug/L 1,1-Dichloropropane ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L	Dibromochloromethane	ND	1.0	ug/L
Chloromethane Chloromethane Chlorotoluene ND Chloromethane ND Chloromethane ND Chloromethane ND Chloromethane ND Chloromethane ND Chlorotoloromethane ND Chlorodifluoromethane ND Chlorodifluoromethane ND Chlorotolorothane ND Chlorotolorothane ND Chlorothorothane ND Chlorothane ND Chlorothane	Chloroethane	ND	1.0	ug/L
1.0	Chloroform	ND	1.0	ug/L
A-Chlorotoluene	Chloromethane	ND	1.0	ug/L
	2-Chlorotoluene	ND	1.0	ug/L
Dibromomethane ND 1.0 ug/L 1.2-Dichlorobenzene ND 1.0 ug/L 1.4-Dichlorobenzene ND 1.0 ug/L 1.4-Dichlorobenzene ND 1.0 ug/L 1.1-Dichloroethane ND 1.0 ug/L 1.2-Dichloroethane ND 1.0 ug/L 1.2-Dichloroethene ND 1.0 ug/L 1.2-Dichloroethene ND 1.0 ug/L 1.1-Dichloroethene ND 1.0 ug/L 1.1-Dichloroethene ND 1.0 ug/L 1.1-Dichloroethene ND 1.0 ug/L 1.1-Dichloropropane ND 1.0 ug/L 1.2-Dichloropropane ND 1.0 ug/L 1.3-Dichloropropane ND 1.0 ug/L 1.3-Dichloropropane ND 1.0 ug/L 1.3-Dichloropropane ND 1.0 ug/L 1.1-Dichloropropene	1-Chlorotoluene	ND	1.0	ug/L
ND	,2-Dibromoethane	ND	1.0	ug/L
1,3-Dichlorobenzene ND 1.0 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L Dichlorodifluoromethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L 0,1-Dichloroethene ND 1.0 ug/L 0,1-Dichloroethene ND 1.0 ug/L 0,1-Dichloroethene ND 1.0 ug/L 0,1-Dichloroethene ND 1.0 ug/L 0,2-Dichloropropane ND 1.0 ug/L 0,2-Dichloropropane ND 1.0 ug/L 0,2-Dichloropropane ND 1.0 ug/L 0,2-Dichloropropane ND 1.0 ug/L 0,1-Dichloropropane ND 1.0 ug/L 0,1-Dichloropropane ND 1.0 ug/L 0,1-Dichloropropene ND 1.0 ug/L		ND	1.0	ug/L
A,3-Dichlorobenzene ND 1.0 ug/L A,4-Dichlorobenzene ND 1.0 ug/L Dichlorodifluoromethane ND 1.0 ug/L A,2-Dichloroethane ND 1.0 ug/L A,2-Dichloroethane ND 1.0 ug/L Dis-1,2-Dichloroethene ND 1.0 ug/L Dis-1,2-Dichloroethene ND 1.0 ug/L Dis-1,2-Dichloroethene ND 1.0 ug/L Dis-1,2-Dichloroethene ND 1.0 ug/L Dichloroethene ND 1.0 ug/L Dichloropropane ND 1.0 ug/L Dichloropropane ND 1.0 ug/L Dichloropropane ND 1.0 ug/L Dichloropropane ND 1.0 ug/L Dis-1,3-Dichloropropene ND 1.0 ug/L Dis-1,3-Dichloropropene ND 1.0 ug/L Dis-1,3-Dichloropropene ND 1.0 ug/L Dis-1,3-Dichloropropene ND 1.0 ug/L Dichloropropene ND 1.0 ug/L	,2-Dichlorobenzene	ND	1.0	ug/L
1.0		ND	1.0	ug/L
Dichlorodifluoromethane ND 1.0 ug/L 1,1-Dichloroethane ND 1.0 ug/L 1,2-Dichloroethane ND 1.0 ug/L cis-1,2-Dichloroethene ND 1.0 ug/L crans-1,2-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L 2,1-3-Dichloropropane ND 1.0 ug/L 2,1-Dichloropropane ND 1.0 ug/L 3,1-Dichloropropane ND 1.0 ug/L		ND	1.0	ug/L
1,2-Dichloroethane		ND	1.0	ug/L
1,2-Dichloroethane		ИD	1.0	ug/L
cis-1,2-Dichloroethene ND 1.0 ug/L trans-1,2-Dichloroethene ND 1.0 ug/L 1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	1,2-Dichloroethane	ND	1.0	$\mathtt{ug/L}$
1,1-Dichloroethene ND 1.0 ug/L 1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	cis-1,2-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane ND 1.0 ug/L 1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L c1s-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	trans-1,2-Dichloroethene	ND	1.0	-
1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L c1s-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	1,1-Dichloroethene	ND	1.0	
1,3-Dichloropropane ND 1.0 ug/L 2,2-Dichloropropane ND 1.0 ug/L c1s-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	1,2-Dichloropropane	ND	1.0	-
2,2-Dichloropropane ND 1.0 ug/L cis-1,3-Dichloropropene ND 1.0 ug/L trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	1,3-Dichloropropane	ND	1.0	ug/L
trans-1,3-Dichloropropene ND 1.0 ug/L 1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	2,2-Dichloropropane	ND	1.0	ug/L
1,1-Dichloropropene ND 1.0 ug/L Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	cis-1,3-Dichloropropene	ND		-
Ethylbenzene ND 1.0 ug/L Isopropylbenzene ND 1.0 ug/L	trans-1,3-Dichloropropene	ND		-
Isopropylbenzene ND 1.0 ug/L	1,1-Dichloropropene	ND	1.0	_
- L · · · F 2 · · · · · · · · · · · · · · ·	Ethylbenzene	ND	1.0	_
p-Isopropyltoluene ND 1.0 ug/L	Isopropylbenzene	ND		-
	p-Isopropyltoluene	ND	1.0	ug/L

(Continued on next page)

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #...: A7B210221-004 Work Order #...: JPR721AA Matrix...... WQ

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Methylene chloride	1.0 B	1.0	ug/L
n-Propylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
1,2,4-Trimethylbenzene	ND	1.0	ug/L
1,3,5-Trimethylbenzene	ND	1.0	${\tt ug/L}$
Vinyl chloride	ND	1.0	ug/L
n-Xylene & p-Xylene	ND .	2.0	ug/L
o-Xylene	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	83	(73 - 12	2)
l,2-Dichloroethane-d4	82	(61 - 12	8)
Coluene-d8	87	(76 - 11	0)
4-Bromofluorobenzene	85	(74 - 11	6)

NOTE(S):

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level

Client Sample ID: AGAC 1-2-2-20-07

GC/MS Volatiles

Matrix..... AA Lot-Sample #...: A7B210221-005 Work Order #...: JPR731AA

Date Sampled...: 02/20/07 13:00 Date Received..: 02/21/07 Prep Date....: 02/23/07 Prep Batch #...: 7054570 Analysis Date..: 02/23/07

Dilution Factor: 2.5 Method..... EPA-2 TO-14A

		REPORTI	NG
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	0.50	ppb(v/v)
Bromodichloromethane	ND	0.50	ppb(v/v)
Bromoform	ND	0.50	ppb(v/v)
Carbon tetrachloride	ND	0.50	ppb(v/v)
Chlorobenzene	ND	0.50	ppb(v/v)
Dibromochloromethane	ND	0.50	ppb(v/v)
Chloroethane	ND	0.50	ppb(v/v)
Chloroform	ND	0.50	ppb(v/v)
1,2-Dibromoethane (EDB)	ND	0.50	ppb(v/v)
Dibromomethane	ND	1.0	ppb(v/v)
1,2-Dichlorobenzene	14	0.50	ppb(v/v)
1,3-Dichlorobenzene	ND	0.50	ppb(v/v)
1,4-Dichlorobenzene	ND	0.50	ppb(v/v)
Dichlorodifluoromethane	ND	0.50	ppb(v/v)
1,1-Dichloroethane	ND	0.50	ppb(v/v)
1,2-Dichloroethane	ND	0.50	ppb(v/v)
cis-1,2-Dichloroethene	1.7	0.50	ppb(v/v)
trans-1,2-Dichloroethene	ND	0.50	ppb(v/v)
1,1-Dichloroethene	NĎ	0.50	ppb(v/v)
1,2-Dichloropropane	ND	0.50	ppb(v/v)
cis-1,3-Dichloropropene	ND	0.50	ppb(v/v)
trans-1,3-Dichloropropene	ND	0.50	ppb(v/v)
Ethylbenzene	ND	0.50	ppb(v/v)
Cumene	ND	1.0	ppb(v/v)
n-Propylbenzene	ND	1.0	ppb(v/v)
Styrene	ND	0.50	ppb(v/v)
1,1,2,2-Tetrachloroethane	ND	0.50	ppb(v/v)
Tetrachloroethene	ND	0.50	ppb(v/v)
Toluene	ND	0.50	ppb(v/v)
1,1,1-Trichloroethane	ND	0.50	ppb(v/v)
1,1,2-Trichloroethane	ND	0.50	ppb(v/v)
Trichloroethene	ND	0.50	ppb(v/v)
Trichlorofluoromethane	ND	0.50	ppb(v/v)
1,2,3-Trichloropropane	ND	1.2	ppb(v/v)
1,3,5-Trimethylbenzene	ND	0.50	ppb(v/v)
Vinyl chloride	ND	0.50	ppb(v/v)
m-Xylene & p-Xylene	ND	0.50	ppb(v/v)
o-Xylene	ИD	0.50	ppb(v/v)

(Continued on next page)

Client Sample ID: AGAC 1-2-2-20-07

GC/MS Volatiles

Lot-Sample #...: A7B210221-005 Work Order #...: JPR731AA Matrix....... AA

	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
1,2-Dichloroethane-d4	106	(70 - 130)		
Toluene-d8	106	(70 - 130)		
4-Bromofluorobenzene	96	(70 - 130)		

Client Sample ID: AGAC-F-2-20-07

GC/MS Volatiles

Lot-Sample #...: A7B210221-006 Work Order #...: JPR8G1AA Matrix...... AA

Date Sampled...: 02/20/07 13:00 Date Received..: 02/21/07 Prep Date....: 02/23/07 Analysis Date..: 02/23/07

Prep Batch #...: 02/23/07
Prep Batch #...: 7054570

Dilution Factor: 2.5 Method.....: EPA-2 TO-14A

PARAMETER			REPORTIN	G
Benzene	PARAMETER	RESULT		
### Bromodichloromethane				
Bromoform				
Carbon tetrachloride ND 0.50 ppb(v/v) Chlorobenzene ND 0.50 ppb(v/v) Dibromochloromethane ND 0.50 ppb(v/v) Chloroftane ND 0.50 ppb(v/v) Chloroform ND 0.50 ppb(v/v) 1,2-Dibromoethane (EDB) ND 0.50 ppb(v/v) 1,2-Dichloroethane (EDB) ND 0.50 ppb(v/v) 1,2-Dichlorobenzene ND 0.50 ppb(v/v) 1,3-Dichlorobenzene ND 0.50 ppb(v/v) 1,4-Dichlorobenzene ND 0.50 ppb(v/v) 1,1-Dichloroethane ND 0.50 ppb(v/v) 1,2-Dichloroethane ND 0.50 ppb(v/v) 1,1-Dichloroethene ND 0.50 ppb(v/v) 1,2-Dichloroethene ND 0.50 ppb(v/v) 1,1-Dichloropropane ND 0.50 ppb(v/v) 1,2-Dichloropropane ND 0.50 ppb(v/v) 1,2-Dichloropropane ND <t< td=""><td></td><td></td><td></td><td></td></t<>				
Chlorobenzene ND 0.50 ppb(v/v) Dibromochloromethane ND 0.50 ppb(v/v) Chloroethane ND 0.50 ppb(v/v) Chloroform ND 0.50 ppb(v/v) 1,2-Dibromoethane (EDB) ND 0.50 ppb(v/v) 1,2-Dichlorobenzene ND 1.0 ppb(v/v) 1,3-Dichlorobenzene ND 0.50 ppb(v/v) 1,4-Dichlorobenzene ND 0.50 ppb(v/v) 1,1-Dichlorobenzene ND 0.50 ppb(v/v) 1,1-Dichloroethane ND 0.50 ppb(v/v) 1,2-Dichloroethane ND 0.50 ppb(v/v) 1,1-Dichloroethene ND 0.50 ppb(v/v) 1,1-Dichloroethene ND 0.50 ppb(v/v) 1,2-Dichloropropane ND 0.50 ppb(v/v) 1,1-Dichloropropane ND 0.50 ppb(v/v) 1,2-Dichloropropane ND 0.50 ppb(v/v) cis-1,3-Dichloropropane ND	Carbon tetrachloride		0.50	
Dibromochloromethane	Chlorobenzene	ND	0.50	
Chloroethane Chloroform Chloroform ND Chloroben Chloroben ND Chloromethane ND Chloroben Chloroben ND Chloroben Chl	Dibromochloromethane	ND	0.50	
Chloroform 1,2-Dibromoethane (EDB) ND 0.50 ppb(v/v) Dibromomethane ND 1.0 ppb(v/v) 1,2-Dichlorobenzene 2.5 0.50 ppb(v/v) 1,3-Dichlorobenzene ND 0.50 ppb(v/v) 1,4-Dichlorobenzene ND 0.50 ppb(v/v) 1,4-Dichlorobenzene ND 0.50 ppb(v/v) 1,1-Dichloroethane ND 0.50 ppb(v/v) 1,1-Dichloroethane ND 0.50 ppb(v/v) 1,2-Dichloroethane ND 0.50 ppb(v/v) trans-1,2-Dichloroethene ND 0.50 ppb(v/v) 1,1-Dichloroethene ND 0.50 ppb(v/v) 1,1-Dichloroethene ND 0.50 ppb(v/v) 1,2-Dichloroethene ND 0.50 ppb(v/v) 1,2-Dichloroethene ND 0.50 ppb(v/v) 1,2-Dichloroethene ND 0.50 ppb(v/v) 1,2-Dichloropropane ND 0.50 ppb(v/v) 1,2-Dichloropropane ND 0.50 ppb(v/v) 1,2-Dichloropropene ND 0.50 ppb(v/v) trans-1,3-Dichloropropene ND 0.50 ppb(v/v) Trichloroethene ND 0.50 ppb(v/v) Trichlorofluoromethane ND 0	Chloroethane	ND	0.50	
1,2-Dibromoethane	Chloroform	ND	0.50	- "
Dibromomethane	1,2-Dibromoethane (EDB)	ND	0.50	
1,2-Dichlorobenzene 2.5 0.50 ppb (v/v) 1,3-Dichlorobenzene ND 0.50 ppb (v/v) 1,4-Dichlorobenzene ND 0.50 ppb (v/v) 1,4-Dichlorobenzene ND 0.50 ppb (v/v) 1,1-Dichloroethane ND 0.50 ppb (v/v) 1,2-Dichloroethane ND 0.50 ppb (v/v) cis-1,2-Dichloroethene ND 0.50 ppb (v/v) trans-1,2-Dichloroethene ND 0.50 ppb (v/v) 1,1-Dichloroethene ND 0.50 ppb (v/v) 1,2-Dichloropropane ND 0.50 ppb (v/v) 1,2-Dichloropropene ND 0.50 ppb (v/v) trans-1,3-Dichloropropene ND 0.50 ppb (v/v) Ethylbenzene ND 0.50 ppb (v/v) Cumene ND 0.50 ppb (v/v) n-Propylbenzene ND 1.0 ppb (v/v) styrene ND 0.50 ppb (v/v) 1,1,2,2-Tetrachloroethane ND <td></td> <td>ND</td> <td>1.0</td> <td></td>		ND	1.0	
1,3-Dichlorobenzene	1,2-Dichlorobenzene	2.5	0.50	
Dichlorodifluoromethane ND 0.50 ppb(v/v) 1,1-Dichloroethane ND 0.50 ppb(v/v) 1,2-Dichloroethane ND 0.50 ppb(v/v) cis-1,2-Dichloroethene 1.9 0.50 ppb(v/v) trans-1,2-Dichloroethene ND 0.50 ppb(v/v) 1,1-Dichloroethene ND 0.50 ppb(v/v) 1,2-Dichloropropane ND 0.50 ppb(v/v) 1,2-Dichloropropane ND 0.50 ppb(v/v) cis-1,3-Dichloropropene ND 0.50 ppb(v/v) trans-1,3-Dichloropropene ND 0.50 ppb(v/v) Ethylbenzene ND 0.50 ppb(v/v) Cumene ND 0.50 ppb(v/v) n-Propylbenzene ND 0.50 ppb(v/v) styrene ND 0.50 ppb(v/v) 1,1,2,2-Tetrachloroethane ND 0.50 ppb(v/v) 1,1,1-Trichloroethane ND 0.50 ppb(v/v) 1,1,2-Trichloroethane ND	-	ND	0.50	
1,1-Dichloroethane ND 0.50 ppb(v/v) 1,2-Dichloroethane ND 0.50 ppb(v/v) cis-1,2-Dichloroethene 1.9 0.50 ppb(v/v) trans-1,2-Dichloroethene ND 0.50 ppb(v/v) 1,1-Dichloroethene ND 0.50 ppb(v/v) 1,2-Dichloropropane ND 0.50 ppb(v/v) cis-1,3-Dichloropropene ND 0.50 ppb(v/v) trans-1,3-Dichloropropene ND 0.50 ppb(v/v) trichloroethene ND 0.50 ppb(v/v) trichloroethene ND 0.50 ppb(v/v) trichlorofluoromethane ND 0.50 ppb(v/v) trichlorofluoromethane ND 0.50 ppb(v/v) trichlorofluoromethane ND 0.50 ppb(v/v) trichlorofluoromethane ND 0.50 ppb(v/v) trichlorode ND 0.50 ppb(v/v) trinyl chloride ND 0.50 ppb(v/v) m-Xylene & p-Xylene ND 0.50 ppb(v/v)	1,4-Dichlorobenzene	ND	0.50	ppb(v/v)
1,2-Dichloroethane ND 0.50 ppb(v/v) cis-1,2-Dichloroethene 1.9 0.50 ppb(v/v) trans-1,2-Dichloroethene ND 0.50 ppb(v/v) 1,1-Dichloroethene ND 0.50 ppb(v/v) 1,2-Dichloropropane ND 0.50 ppb(v/v) cis-1,3-Dichloropropene ND 0.50 ppb(v/v) trans-1,3-Dichloropropene ND 0.50 ppb(v/v) Ethylbenzene ND 0.50 ppb(v/v) Cumene ND 1.0 ppb(v/v) n-Propylbenzene ND 1.0 ppb(v/v) Styrene ND 1.0 ppb(v/v) Styrene ND 0.50 ppb(v/v) 1,1,2-Tetrachloroethane ND 0.50 ppb(v/v) Tetrachloroethene ND 0.50 ppb(v/v) 1,1,2-Trichloroethane ND 0.50 ppb(v/v) Trichloroethane ND 0.50 ppb(v/v) Trichlorofluoromethane ND 0.50 ppb(v/v) Trichlorofloropropane ND 0.50 <th< td=""><td>Dichlorodifluoromethane</td><td>ND</td><td>0.50</td><td>ppb(v/v)</td></th<>	Dichlorodifluoromethane	ND	0.50	ppb(v/v)
cis-1,2-Dichloroethene 1.9 0.50 ppb(v/v) trans-1,2-Dichloroethene ND 0.50 ppb(v/v) 1,1-Dichloroethene ND 0.50 ppb(v/v) 1,2-Dichloropropane ND 0.50 ppb(v/v) cis-1,3-Dichloropropene ND 0.50 ppb(v/v) trans-1,3-Dichloropropene ND 0.50 ppb(v/v) Ethylbenzene ND 0.50 ppb(v/v) Cumene ND 1.0 ppb(v/v) n-Propylbenzene ND 1.0 ppb(v/v) Styrene ND 0.50 ppb(v/v) 1,1,2,2-Tetrachloroethane ND 0.50 ppb(v/v) Tetrachloroethene ND 0.50 ppb(v/v) 1,1,1-Trichloroethane ND 0.50 ppb(v/v) 1,1,2-Trichloroethane ND 0.50 ppb(v/v) Trichlorofluoromethane ND 0.50 ppb(v/v) 1,2,3-Trichloropropane ND 0.50 ppb(v/v) 1,3,5-Trimethylbenzene ND <td>1,1-Dichloroethane</td> <td>ND</td> <td>0.50</td> <td>ppb(v/v)</td>	1,1-Dichloroethane	ND	0.50	ppb(v/v)
trans-1,2-Dichloroethene ND 0.50 ppb(v/v) 1,1-Dichloroethene ND 0.50 ppb(v/v) 1,2-Dichloropropane ND 0.50 ppb(v/v) cis-1,3-Dichloropropene ND 0.50 ppb(v/v) trans-1,3-Dichloropropene ND 0.50 ppb(v/v) Ethylbenzene ND 0.50 ppb(v/v) Cumene ND 1.0 ppb(v/v) n-Propylbenzene ND 1.0 ppb(v/v) styrene ND 0.50 ppb(v/v) 1,1,2,2-Tetrachloroethane ND 0.50 ppb(v/v) Tetrachloroethene ND 0.50 ppb(v/v) 1,1,1-Trichloroethane ND 0.50 ppb(v/v) 1,1,2-Trichloroethane ND 0.50 ppb(v/v) Trichlorofluoromethane ND 0.50 ppb(v/v) 1,2,3-Trichloropropane ND 0.50 ppb(v/v) 1,3,5-Trimethylbenzene ND 0.50 ppb(v/v) winyl chloride ND	1,2-Dichloroethane	ND	0.50	ppb(v/v)
1,1-Dichloroethene ND 0.50 ppb(v/v) 1,2-Dichloropropane ND 0.50 ppb(v/v) cis-1,3-Dichloropropene ND 0.50 ppb(v/v) trans-1,3-Dichloropropene ND 0.50 ppb(v/v) Ethylbenzene ND 0.50 ppb(v/v) Cumene ND 1.0 ppb(v/v) n-Propylbenzene ND 1.0 ppb(v/v) Styrene ND 0.50 ppb(v/v) 1,1,2,2-Tetrachloroethane ND 0.50 ppb(v/v) Tetrachloroethene ND 0.50 ppb(v/v) 1,1,1-Trichloroethane ND 0.50 ppb(v/v) 1,1,2-Trichloroethane ND 0.50 ppb(v/v) Trichloroethene ND 0.50 ppb(v/v) Trichlorofluoromethane ND 0.50 ppb(v/v) 1,2,3-Trichloropropane ND 0.50 ppb(v/v) Vinyl chloride ND 0.50 ppb(v/v) m-Xylene & p-Xylene ND 0.50 ppb(v/v)	cis-1,2-Dichloroethene	1.9	0.50	ppb(v/v)
1,2-Dichloropropane ND 0.50 ppb(v/v) cis-1,3-Dichloropropene ND 0.50 ppb(v/v) trans-1,3-Dichloropropene ND 0.50 ppb(v/v) Ethylbenzene ND 0.50 ppb(v/v) Cumene ND 1.0 ppb(v/v) n-Propylbenzene ND 1.0 ppb(v/v) Styrene ND 0.50 ppb(v/v) 1,1,2,2-Tetrachloroethane ND 0.50 ppb(v/v) Tetrachloroethene ND 0.50 ppb(v/v) 1,1,1-Trichloroethane ND 0.50 ppb(v/v) 1,1,2-Trichloroethane ND 0.50 ppb(v/v) Trichloroethene ND 0.50 ppb(v/v) Trichlorofluoromethane ND 0.50 ppb(v/v) 1,2,3-Trichloropropane ND 0.50 ppb(v/v) 1,3,5-Trimethylbenzene ND 0.50 ppb(v/v) Winyl chloride ND 0.50 ppb(v/v) m-Xylene & p-Xylene ND 0.50 ppb(v/v)	trans-1,2-Dichloroethene	ND	0.50	ppb(v/v)
cis-1,3-Dichloropropene ND 0.50 ppb(v/v) trans-1,3-Dichloropropene ND 0.50 ppb(v/v) Ethylbenzene ND 0.50 ppb(v/v) Cumene ND 1.0 ppb(v/v) n-Propylbenzene ND 1.0 ppb(v/v) Styrene ND 0.50 ppb(v/v) 1,1,2,2-Tetrachloroethane ND 0.50 ppb(v/v) Tetrachloroethene ND 0.50 ppb(v/v) 1,1,1-Trichloroethane ND 0.50 ppb(v/v) 1,1,2-Trichloroethane ND 0.50 ppb(v/v) Trichloroethene ND 0.50 ppb(v/v) Trichlorofluoromethane ND 0.50 ppb(v/v) 1,2,3-Trichloropropane ND 0.50 ppb(v/v) 1,3,5-Trimethylbenzene ND 0.50 ppb(v/v) Winyl chloride ND 0.50 ppb(v/v)	1,1-Dichloroethene	ND	0.50	ppb(v/v)
trans-1,3-Dichloropropene ND 0.50 ppb(v/v) Ethylbenzene ND 0.50 ppb(v/v) Cumene ND 1.0 ppb(v/v) n-Propylbenzene ND 1.0 ppb(v/v) Styrene ND 0.50 ppb(v/v) 1,1,2,2-Tetrachloroethane ND 0.50 ppb(v/v) Tetrachloroethene ND 0.50 ppb(v/v) 1,1,1-Trichloroethane ND 0.50 ppb(v/v) 1,1,2-Trichloroethane ND 0.50 ppb(v/v) Trichloroethane ND 0.50 ppb(v/v) Trichlorofluoromethane ND 0.50 ppb(v/v) 1,2,3-Trichloropropane ND 0.50 ppb(v/v) 1,3,5-Trimethylbenzene ND 0.50 ppb(v/v) Vinyl chloride ND 0.50 ppb(v/v) m-Xylene & p-Xylene ND 0.50 ppb(v/v)	1,2-Dichloropropane	ND	0.50	ppb(v/v)
Ethylbenzene ND 0.50 ppb(v/v) Cumene ND 1.0 ppb(v/v) n-Propylbenzene ND 1.0 ppb(v/v) Styrene ND 0.50 ppb(v/v) 1,1,2,2-Tetrachloroethane ND 0.50 ppb(v/v) Tetrachloroethene ND 0.50 ppb(v/v) 1,1,1-Trichloroethane ND 0.50 ppb(v/v) 1,1,2-Trichloroethane ND 0.50 ppb(v/v) Trichloroethene ND 0.50 ppb(v/v) Trichlorofluoromethane ND 0.50 ppb(v/v) 1,2,3-Trichloropropane ND 0.50 ppb(v/v) 1,3,5-Trimethylbenzene ND 0.50 ppb(v/v) Vinyl chloride ND 0.50 ppb(v/v) m-Xylene & p-Xylene ND 0.50 ppb(v/v)	cis-1,3-Dichloropropene	ND	0.50	ppb(v/v)
Cumene ND 1.0 ppb(v/v) n-Propylbenzene ND 1.0 ppb(v/v) Styrene ND 0.50 ppb(v/v) 1,1,2,2-Tetrachloroethane ND 0.50 ppb(v/v) Tetrachloroethene ND 0.50 ppb(v/v) 1,1,1-Trichloroethane ND 0.50 ppb(v/v) 1,1,2-Trichloroethane ND 0.50 ppb(v/v) Trichloroethene ND 0.50 ppb(v/v) Trichlorofluoromethane ND 0.50 ppb(v/v) 1,2,3-Trichloropropane ND 1.2 ppb(v/v) 1,3,5-Trimethylbenzene ND 0.50 ppb(v/v) Vinyl chloride ND 0.50 ppb(v/v) m-Xylene & p-Xylene ND 0.50 ppb(v/v)	trans-1,3-Dichloropropene	ND	0.50	ppb(v/v)
n-Propylbenzene ND 1.0 ppb (v/v) Styrene ND 0.50 ppb (v/v) 1,1,2,2-Tetrachloroethane ND 0.50 ppb (v/v) Tetrachloroethene ND 0.50 ppb (v/v) Toluene 0.54 0.50 ppb (v/v) 1,1,1-Trichloroethane ND 0.50 ppb (v/v) 1,1,2-Trichloroethane ND 0.50 ppb (v/v) Trichloroethane ND 0.50 ppb (v/v) Trichlorofluoromethane ND 0.50 ppb (v/v) 1,2,3-Trichloropropane ND 1.2 ppb (v/v) 1,3,5-Trimethylbenzene ND 0.50 ppb (v/v) Vinyl chloride ND 0.50 ppb (v/v) m-Xylene & p-Xylene ND 0.50 ppb (v/v)	Ethylbenzene	ND	0.50	ppb(v/v)
Styrene ND 0.50 ppb(v/v) 1,1,2,2-Tetrachloroethane ND 0.50 ppb(v/v) Tetrachloroethene ND 0.50 ppb(v/v) Toluene 0.54 0.50 ppb(v/v) 1,1,1-Trichloroethane ND 0.50 ppb(v/v) 1,1,2-Trichloroethane ND 0.50 ppb(v/v) Trichloroethane ND 0.50 ppb(v/v) Trichlorofluoromethane ND 0.50 ppb(v/v) 1,2,3-Trichloropropane ND 1.2 ppb(v/v) 1,3,5-Trimethylbenzene ND 0.50 ppb(v/v) Vinyl chloride ND 0.50 ppb(v/v) m-Xylene & p-Xylene ND 0.50 ppb(v/v)	Cumene	ND	1.0	ppb(v/v)
1,1,2,2-Tetrachloroethane ND 0.50 ppb(v/v) Tetrachloroethene ND 0.50 ppb(v/v) Toluene 0.54 0.50 ppb(v/v) 1,1,1-Trichloroethane ND 0.50 ppb(v/v) 1,1,2-Trichloroethane ND 0.50 ppb(v/v) Trichloroethene ND 0.50 ppb(v/v) Trichlorofluoromethane ND 0.50 ppb(v/v) 1,2,3-Trichloropropane ND 1.2 ppb(v/v) 1,3,5-Trimethylbenzene ND 0.50 ppb(v/v) Vinyl chloride ND 0.50 ppb(v/v) m-Xylene & p-Xylene ND 0.50 ppb(v/v)	n-Propylbenzene	ND	1.0	ppb(v/v)
Tetrachloroethene ND 0.50 ppb(v/v) Toluene 0.54 0.50 ppb(v/v) 1,1,1-Trichloroethane ND 0.50 ppb(v/v) 1,1,2-Trichloroethane ND 0.50 ppb(v/v) Trichloroethene ND 0.50 ppb(v/v) Trichlorofluoromethane ND 0.50 ppb(v/v) 1,2,3-Trichloropropane ND 1.2 ppb(v/v) 1,3,5-Trimethylbenzene ND 0.50 ppb(v/v) Vinyl chloride ND 0.50 ppb(v/v) m-Xylene & p-Xylene ND 0.50 ppb(v/v)	Styrene	ND	0.50	ppb(v/v)
Toluene 0.54 0.50 ppb(v/v) 1,1,1-Trichloroethane ND 0.50 ppb(v/v) 1,1,2-Trichloroethane ND 0.50 ppb(v/v) Trichloroethane ND 0.50 ppb(v/v) Trichlorofluoromethane ND 0.50 ppb(v/v) 1,2,3-Trichloropropane ND 1.2 ppb(v/v) 1,3,5-Trimethylbenzene ND 0.50 ppb(v/v) Vinyl chloride ND 0.50 ppb(v/v) m-Xylene & p-Xylene ND 0.50 ppb(v/v)	1,1,2,2-Tetrachloroethane	ND	0.50	ppb(v/v)
1,1,1-Trichloroethane ND 0.50 ppb(v/v) 1,1,2-Trichloroethane ND 0.50 ppb(v/v) Trichloroethene ND 0.50 ppb(v/v) Trichlorofluoromethane ND 0.50 ppb(v/v) 1,2,3-Trichloropropane ND 1.2 ppb(v/v) 1,3,5-Trimethylbenzene ND 0.50 ppb(v/v) Vinyl chloride ND 0.50 ppb(v/v) m-Xylene & p-Xylene ND 0.50 ppb(v/v)	Tetrachloroethene	ND	0.50	ppb(v/v)
1,1,2-Trichloroethane ND 0.50 ppb(v/v) Trichloroethene ND 0.50 ppb(v/v) Trichlorofluoromethane ND 0.50 ppb(v/v) 1,2,3-Trichloropropane ND 1.2 ppb(v/v) 1,3,5-Trimethylbenzene ND 0.50 ppb(v/v) Vinyl chloride ND 0.50 ppb(v/v) m-Xylene & p-Xylene ND 0.50 ppb(v/v)	Toluene	0.54	0.50	ppb (√√)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,1,1-Trichloroethane	ND	0.50	ppb(v/v)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,1,2-Trichloroethane	ND	0.50	ppb(v/v)
1,2,3-Trichloropropane ND 1.2 ppb(v/v) 1,3,5-Trimethylbenzene ND 0.50 ppb(v/v) Vinyl chloride ND 0.50 ppb(v/v) m-Xylene & p-Xylene ND 0.50 ppb(v/v)	Trichloroethene	ND		ppb(v/v)
1,3,5-Trimethylbenzene ND 0.50 ppb(v/v) Vinyl chloride ND 0.50 ppb(v/v) m-Xylene & p-Xylene ND 0.50 ppb(v/v)		ND	0.50	ppb(v/v)
Vinyl chloride ND 0.50 ppb(v/v) m-Xylene & p-Xylene ND 0.50 ppb(v/v)	1,2,3-Trichloropropane	ND	1.2	ppb(v/v)
m-Xylene & p-Xylene ND 0.50 ppb (v/v)		ND		ppb(v/v)
<u> </u>		ND		
o-Xylene ND 0.50 ppb (v/v)	m-Xylene & p-Xylene	ND		
	o-Xylene	ND	0.50	ppb(v/v)

(Continued on next page)

Client Sample ID: AGAC-F-2-20-07

GC/MS Volatiles

Lot-Sample #: A7B210221-006	Work Order #: JPR8G1AA	Matrix AA
-----------------------------	------------------------	-----------

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
1,2-Dichloroethane-d4	106	(70 - 130)
Toluene-d8	102	(70 - 130)
4-Bromofluorobenzene	98	(70 - 130)

Exygen®
Precise Research.
Proven Results.

Client ID: A7B210221-1 Influent 2-20-07

Lab ID: L0010913-0001

UNITS	RESULT	OUANTITATION	MIDOR MORNIOD		
		Quantitation	TEST METHOD	TEST DATE	ANALYST
ug/L ug/L	U 0.042 U 0.006 0.148	0.042 0.006 0.002	SOP 6.2 SOP 6.2 SOP 6.2	4-Mar-07 4-Mar-07 4-Mar-07	TA TA TA
•	ug/L	ug/L U 0.006	ug/L U 0.006 0.006		. ug/L U 0.006 0.006 SOP 6.2 4-Mar-07

Client ID: A7B210221-2 LGAC 2-3-2-20-07

Lab ID: L0010913-0002 .

PARAMETER	UNITS		RESULT	LIMIT OF QUANTITATION	TEST METHOD	TEST DATE	analyst
<u>PESTICIDE ANALYSIS</u> KEPONE PHOTOMIREX	ug/L ug/L	0	0.042	0.042 0.006	SOP 6.2 SOP 6.2	4-Mar-07 4-Mar-07	TA TA
AIREX	ug/L	ס	0.002	0.002	SOP 6.2	4-Mar-07	TA

Client ID: A7B210221-3 Outfall 2-20-07

Lab ID: L0010913-0003

PARAMETER	UNITS	1	RESULT	LIMIT OF QUANTITATION	· TEST	METHOD	TEST DATE	ANALYST
PESTICIDE ANALYSIS KEPONE PHOTOMIREX MIREX	ug/L ug/L ug/L	ט ט ט	0.042 0.006 0.002	0.042 0.006 0.002	40è.	6.2 6.2 6.2	4-Mar-07 4-Mar-07 4-Mar-07	TA TA TA

Chain of Custody Record

Severn Trent Laboratories, Inc.

Propert Memaper Propert Memaper Memape	STL-4124 (0901)		Drovert	Man															7							Las			
Approximate Continue Contin						ρ.		_	1	۸.	. 1	۱_	ارا درا						10		- :	2	_ ^	7	- {	Chi			
Struct Rd Substitutions Substitution Subs	Rutgers Organics Cofp		Telepho	ne N	lumb	Sr (A)	ea C	ode)/	Fax	Numb	na. er	7	VI.						1	ab N	umb	-U				├	334	233	
Short Callege PA Report Repor	201 Struble Rd.								(814	ľ) z	23	8-	53	83	}			-			.			- {	Pa	ge	_ of1	/
Second Single Comments Second Single Second Single Second	Chy		Site Co.	ntact				1	ab C	Contac	#				Π											7			
Solid Site Solid Site Solid		6801	Den	ny.	La	مع		L							┝	Τ		mo	re s	OBC	9 is (1880	led)	_	-1	\dashv			
Influent 2-10-07			Cameri	wayt	אוז זווכ	ımoe	r								Įχ	4	1	y				3		- 1	3	- {			
Influent 2-10-07																	ł.,	7	1			3		爿	ct	- 1			
Influent 2-10-07	Contract/Purchase Order/Cubile No.		1		M	atnx									F	2	Ś	4	20	5.3	÷	l'd	×	ğ.	Y	-	Condition	S OF HECE	эір≀
LGAC 2-3 - 2-20-07	Sample I D No. and Description (Containers for each sample may be combined on one line)	Date	Time	₹	Aqueous	38	78		Chpres	12804 18804	Ş	Ž.	ZnAc/	NZOH NZOH	755	2	'n	Š	R,	Λα	0	CO	7	3	Lean				
GAC 2-3 - 2-20-07 3200 X X X 1 2 2 2 1	Influent 2-70-07	2-20-07	1300		X	4	1	!;	×	\perp	\perp	\perp	\perp		1	+													
Outfall 2-20-67 2-20-07 300 X X X X X X X X X		2-20-07	300		X	\perp		>	K		\perp	L		\perp	1	2													
Sample Daposel Date Time Date Date Time Date Date Date Time Date		2-20-07	1300		x			;	X		\perp			_	1	2	2	2	1										
Comments	Influent 2-20-07 GLW	2-20-07	1300		×	\dashv	+	\pm	\pm	_	-×	+	\pm	\pm		L	-			3	-								
Outfall 2-20-07 2-20-07 1300 X X X X X X X X X		2-20-07	1300		X	\perp	\perp	1			×	:_	1	\perp	L											$oldsymbol{ol}}}}}}}}}}}}}}}}}}$			
Outfall 2-20-07		2-20-07	1300		X			\perp	\perp		×	1								3									
Possible Hazard Identification Non-Hazard Fammable Skin Irritant Poison 8 Unknown Return To Client Disposel By Lab Archive For Months Immediate Months	•	2-20-07	1360			_	_	\perp	1	X.	\perp	\perp	\perp	\perp	L						2	1	2			\bot			
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Poison B Unknown Return To Client Disposal By Lab Archive For Months in larger than 1 month) Turn Around Time Required 24 Hours 49 Hours 7 Days 14 Days 21 Days Other Date Time 2-20-07 1500 2 Relinquished By Date Time 2 Received By Date Time 3 Received By Date Time Comments Comm	Outfall 2-20-07	2-20-07	1300		-	_	1	\perp	\perp			>	<u> </u>	_		L								1		_			
Possible Hazard Identification Non-Hazard Fiammable Skin Irmant Poison 8 Unknown Return To Client Disposal By Lab Archive For Months longer than 1 months		2-20-07	1300		×	_	\perp	_ _	\perp	_ <u> ×</u>	1	\perp	1	\perp		L									1	\bot			
Non-Hazard Flammable Skin Irritant Poison 8 Unknown Return To Client Disposel By Lab Archive For		<u> </u>					1	_	\perp	_	1	1	1		L	L		_						\perp		\perp			
Non-Hazard Flammable Skin Irritant Poison 8 Unknown Return To Client Disposel By Lab Archive For							\perp	_		\perp		1	_	1_	L										\perp	\perp			
Non-Hazard Flammable Skin Irritant Poison 8 Unknown Return To Client Disposal By Lab Archive For											\perp	L	1	1															
Turn Around Time Required 24 Hours			-	- 1	_ `	-			_	_				_								(A I	9 <i>9 ma</i>	ıy be	<i>ass</i> e:	:836(t if samples are r	etained	
24 Hours 48 Hours 7 Days 14 Days 21 Days Other 1 Relinquished By Date Time 2 Received By Date Time 2 Received By 2 Relinquished By Date Time 2 Received By Date Time 3 Received By 3 Relinquished By Date Time 3 Received By Date Time 3 Received By Comments	140.11	Poison 8	Unknown	, 1] Re	tum	To Cli	ent								hive f	or_			Mon	ths	long	er the	an t	month	<u>"</u>			
Takinquished By Gerald Wilhelm 2-20-07 1500 Date Time 2-21.07 930 Relinquished By Date Time 2. Received By Date Time 3. Received By Date Time Comments		371/0 D 31 Dave	По	nor					-1`	ao ne	iquii e	יפינות	113 (3)	pour	"														
Gerald Wilhelm 2-20-07 1500 2 Relinquished By Date Time 2 Received By Date Time 3 Received By Date Time Comments		Ays C El Days				, Tim	в			1 Rec	elvec	By	,	$\overline{\Box}$		7)ate	Time	
2 Relinquished By Date Time 2. Received By Date Time 3 Received By Date Time Comments			2-2	<i>0</i> ~	07	1	50	0	- 1	/	/	-1	/~	乄		1	نہ	1									-		٤
3 Relinquished By Date Time Comments Comments				_	<u> </u>			<u>~</u> _	1	2. Rec	eivec	1 By				<u> </u>		_											<u>_</u>
3 Relinquished By Date Time Comments Comments					_	1											_									Ì		l	ŗ
	3 Relinquished By		Date			Tim	e		1	3 Rec	evec	l By			_				-							10	ate	Time	
			ــــــــــــــــــــــــــــــــــــــ			1																				1		<u> </u>	 ‡
	Camments																												Š
	DISTRIBUTION: WHITE - Returned to Client with Report.	CANARY - Stays w	ith the Sam	ple.	PINK	Fle	id Co	py																					
																													STI

ATTACHMENT 4

TWO ACUTE TOXICITY EVALUATIONS FEBRUARY 20 THRU 24, 2007 NEASE CHEMICAL SITE, SALEM, OHIO

RESULTS OF TWO ACUTE TOXICITY EVALUATIONS OF RUTGERS ORGANICS CORPORATION, SALEM SITE LAGOON WATER TREATMENT PLANT FINAL EFFLUENT

AAT JOB # 51 - 01 - 80

20 February – 24 February 2007

Report Prepared for:

Rutgers Organics Corporation 201 Struble Road State College, Pennsylvania 16801

Report Prepared by:

AMERICAN AQUATIC TESTING, INC. 890 NORTH GRAHAM STREET ALLENTOWN, PENNSYLVANIA 18109

INTRODUCTION

A set of two static acute toxicity tests were conducted with larval fathead minnows, *Pimephales promelas* (P. promelas) and the freshwater cladoceran, Ceriodaphnia dubia (C. dubia) to determine the relative toxicity of final effluent from the Rutgers Organics Corporation Lagoon Water Treatment Plant, Salem, Ohio. The 96-hour static fathead acute toxicity test and the 48-hour static C. dubia acute toxicity tests were conducted from 20 February through 24 February 2007. The toxicity evaluations were conducted by American Aquatic Testing, Inc., Allentown, Pennsylvania.

All tests were performed according to procedures outlined in Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms, 4th Edition (EPA/600/4-90/027F) and Reporting and Testing Guidance for Biomonitoring Required by the Ohio Environmental Protection Agency, October 1991.

MATERIALS

TEST ORGANSIMS

Fathead Minnow, Pimephales promelas

Larval fathead minnows used in acute testing were obtained from in-house cultures maintained by ABS,Inc.. Test age organisms are maintained in shallow depth basins containing 10L of moderately hard reconstituted water and are fed newly hatched *Artemia* (brine shrimp) nauplii twice a day up until test initiation. The test organisms were 8 days old at test initiation. No acclimation of these test organisms was required as they were raised in moderately hard reconstituted water, which was used for testing.

Freshwater Cladoceran, Ceriodaphnia dubia

Cladoceran neonates, C dubia were obtained from AAT, Inc.'s in-house cultures. Cultures for generating test age (<24 hours old) neonates are maintained as single cultures in 30 mL soufflé cups containing 15 mL of moderately hard reconstituted water. These adults are transferred daily into fresh culture water and are fed a combination of a unicellular green alga (Selenastrum capricornutum) and a yeast/Cerophyll/trout chow (YCT) suspension. Broods released during a five hour period were pooled and used to initiate the acute toxicity test. No acclimation of these test organisms was required as they were raised in moderately hard reconstituted water, which was used for testing. Neonates were released between 0800 and 1300 of February 20, 2007

DILUTION WATER

Moderately hard reconstituted water was prepared in accordance to procedures outlined in EPA/600/4-90/027F and was used as dilution/control water for the toxicity tests. Deionized water (Specialty Filtration Products) and reagent grade chemicals were used to achieve the following concentrations 96 mg/L of NaHCO₃, 60.0 mg/L of MgSO₄ and 4.0 mg/L of KCl and 60.0mg/L of CaSO₄ 2H₂O.

TEST MATERIAL

The material tested was final effluent collected by Howells and Baird personnel with a grab sampler placed at the outfall. One grab sample was collected for each of the two acute toxicity tests. The sample, collected February 19, 2007, was shipped overnight to AAT, Inc. in a cooler containing ice and was used to initiate testing on February 20, 2007. A Chain-of-Custody accompanied the sample. Tests were initiated prior to the expiration of the 36-hour holding time.

METHODS

P. promelas larvae (8 day old) were exposed to the effluent sample for 96 hours under static, non-renewal conditions. Test organisms were exposed in groups of 10 in 1 L glass beakers containing 500 mL of test solution with two replicates per concentration (20 organisms per concentration). The test organisms were fed prior to test initiation and at 48 hours.

C. dubia neonates (<24 hours old) were exposed to the effluent sample for 48 hours under static non-renewal conditions. Test organisms were exposed in groups of five in 30 mL soufflé cups containing 15 mL of test solution with four replicates per concentration (20 organisms per concentration). The test organisms were not fed during the test exposure.

Both sets of test chambers were placed in randomized positions in a temperature controlled environment maintained at 25 ± 1 ° C. The highest concentration used for exposure was 100 %. A 0.56 dilution schedule was used to prepare sample concentrations of 56%, 32%, 18% and 10%, by volume. A control sample consisting of 100 % dilution water was also tested.

Surviving test organisms were counted daily. Dead test organisms and debris were removed daily at this time. Temperature was measured daily in a surrogate replicate placed alongside the test chambers. Dissolved oxygen, pH and conductivity were measured in one replicate chamber at each concentration at the beginning and end of the test exposure. Alkalinity and hardness were measured in the control and the 100% concentration at the beginning of the test exposure. The lighting regime was 16 hours light, 08 hours dark.

RESULTS

FATHEAD MINNOW 96-HOUR ACUTE TEST RESULTS

As a result of less than 50 % mortality in any test concentration during the exposure period the acute data was evaluated visually. Therefore, the 96-hour LC_{50} is > 100%. This result yields an Acute Toxic Unit; $TUa~(100\%/LC_{50})$ of 1.0.

CERIODAPHNIA DUBIA 48-HOUR ACUTE TEST RESULTS

As a result of less than 50 % mortality in any test concentration during the exposure period the acute data was evaluated visually. Therefore, the 48-hour LC_{50} is > 100%. This result yields an Acute Toxic Unit; $TUa~(100\%/LC_{50})$ of 1.0.

Table I. Fathead Minnow Mortality Data

CLIENT: Rutgers Organics Corp., Salem Lagoon Water Treatment Plant

TEST: 96-hour Definitive Acute Toxicity Test

DATE: 20 February – 24 February 2007

			Cumulative	number of o	organisms af	fected at	
Sample	%	# of	24 hr	48 hr	72 hr	96 hr	%
Type	Effluent	Organisms	<u> </u>		_		Mortality*
	0	20	0	0	0	0	0
	10	20	0	0	0	1	5
Final	18	20	0	2	2	3	15
Effluent	32	20	0	0	0	0	0
	56	20	0	2	3	3	15
	100	20	0	0	0	0	0

^{*} Cumulative Percent Mortality at 96 hours

Table II. Fathead Minnow Physical/Chemical Measurements

CLIENT: Rutgers Organics Corp., Salem Lagoon Water Treatment Plant

TEST: 96-hour Definitive Acute Toxicity Test

DATE: 20 February – 24 February 2007

	% Effluent by Volume											
Time	0	10	18	32	56	100						
0 hour												
Conduct. µmhos	299	352	399	469	615	842						
D.O. ppm	8.3	8.3	7.9	7.8	7.2	5.9						
Temp. ^o C A	24.0	24.0	24.5	24.5	25.0	25.0						
В	24.0	24.0	24.5	24.5	25.0	25.0						
pH Std .units	7.8	7.8	7.9	8.0	8.1	8.2						
Alkalınity mg/L	60					210						
Hardness mg/L	90					320						
24 hours A	25.0	25.0	25.0	25.0	25.0	25.0						
Temp. °C B	25.0	25.0	25.0	25.0	25.0	25.0						
		-										
48 hours A	25.0	25.0	25.0	25.0	24.0	24.0						
Temp. °C B	25.0	25.0	25.0	25.0	24.0	24.0						
		· ·										
72 hours A	24.5	24.5	24.5	24.5	24.5	24.5						
Temp. °C B	24.5	24.5	24.5	24.5	24.5	24.5						
96 hours												
Conduct. µmhos	357	400	451	538	676	943						
D.O. ppm	6.9	6.6	6.6	6.6	6.5	6.3						
pH Std .units	7.9	7.9	8.0	8.1	8.2	8.3						
Temp. °C A	24.5	24.5	24.0	24.0	24.0	24.0						
В	24.5	24.5	24.0	24.0	24.0	24.0						

Table I. Ceriodaphnia dubia Mortality Data

CLIENT: Rutgers Organics Corp., Salem Lagoon Water Treatment Plant

TEST: 48 hour Definitive Acute Toxicity Test

DATE: 20 February – 22 February 2007

Cumulative number of organism affected at

Sample Type	%	# of			%
Туре	Effluent	Organisms	24 hours	48 hours	Mortality*
	0	20	0	0	0
	10	20	0	0	0
Final	18	20	0	0	0
Effluent	32	20	0	0	0
	56	20	0	0	0
	100	20	0	0	0

^{*} Cumulative Percent Mortality at 48 hours

Table II. Ceriodaphnia dubia Physical/Chemical Measurements

CLIENT: Rutgers Organics Corp., Salem Lagoon Water Treatment Plant

TEST: 48 hour Definitive Acute Toxicity Test

DATE: 20 February – 22 February 2007

			% Effluent	by Volume		
Time	0	10	18	32	56	100
0 hour						
Conduct. µmhos	299	352	399	469	615	842
D.O. ppm	8.3	8.3	7.9	7.8	7.2	5.9
Temp. °C	24.0	24.0	24.5	24.5	25.0	25.0
pH Std .units	7.8	7.8	7.9	8.0	8.1	8.2
Alkalinity mg/L	60	•				210
Hardness mg/L	90					320
24 hours					:	
Temp. °C	25.0	25.0	25.0	25.0	25.0	25.0
48 hours						
Conduct. µmhos	375	410	459	555	696	924
D.O. ppm	8.4	8.1	8.2	8.2	8.2	8.2
pH Std .units	7.9	8.0	8.0	8.1	8.2	8.3
Temp. °C	24.0	25.0	25.0	25.0	25.0	25.0

APPENDIX I

RAW DATA

20 February – 24 February 2007

RESULTS OF TWO ACUTE TOXICITY EVALUATIONS OF RUTGERS ORGANICS CORPORATION, SALEM SITE LAGOON WATER TREATMENT PLANT FINAL EFFLUENT

Freshwater Acute Test

American Aquatic Testing, Inc.

Job #: 51-61-80 Start Date/Time: 2-20-07 (617)

Species: C.d.b.a End Date/Time: 3/20/07 1510

Dilution Water: EPA Mod Hard Test Type: 48 hr. SNR

Conc.		perature	
<u>%</u>	0 hr.	24 hr.	48 hr.
Control	830	25.0	240
10	830	25-0	<i>95</i> 0
18	790	25.0	250
32	78 0	25,0	<i>35</i> 0
56	7.28	250	<i>85</i> 0
100	25.0	2510	<i>85.</i> 0
Conc.	pН	(Stand ur	nits)
%	0 hr.		48 hr.
Control	7.8		7.9
10	7-8		8.0
18	7.9		8-0
32	₽.Ω		8:1
56	8.1		8.2
100	8.2		8.3
Conc.	Dissolv	ed Oxyge	n (mg/L)
Control	8.3		8.4
10	83		<u> </u>
18	79		8.2
32	7.8		8.3
56	7.2	j	8.2
100	5.9	<u> </u>	83
Conc.	Cond	uctivity (u	mhos)
Control	299		375
10	352		410
18	399		459
32	489		555
56	615		696
100	842	<u> </u>	424
Initials	W		you
Date	200		glas

Conc.	Rep.	Li	ive Coun	t			
%]]	0 hr.	24 hr.	48 hr.			
	Α) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O	5	6			
Control	В	MOD	5	5			
	С	(6) XX (6) XX	5	48 hr. ら 5 5			
	D	KQ@	5	5			
	Α	5	5	5			
10	В	555555	5	_ 5			
	С	5	5	5			
	D		5 5 5 5	5			
	Α	5	5	5			
18	В	5	5	5			
	С	5	5	5			
	D		5	5			
	Α	5	5	5			
32	В	5	5	5			
	C	5	5 5 5	5			
	D	5	5	5			
	A B	5	5	5			
56	В	5 5 5 5 5 5	5	5			
	С	5	5 5	5			
	D	5	5	5			
	Α	5	5	5			
100	B C	5	5	5			
	С	5	5	5 5 5 5 5 5 5 5 5 5 5			
	D	5	5				
Initia	ıls	Nep Nep VI					
Dat	е	2/20	2/21	100			

	<u> </u>	
Conc.	Alkalinity	Hardness
Control	(0)	QO
100%	210	320
Initials	VOL	WW-
Date	2/20	200

Observations: O 34.0 kg/go @ 34.5 Vay	<i>3∂5</i> ,0 k	of of
		

Freshwater Acute Test

American Aquatic Testing, Inc.

Job #:	51-0	1-80		1001
	\bigcirc	1	-	

End Date/Time: 2 24-67 1445

Start Date/Time: 2=20-07 (545

Species: Promotes

Dilution Water: FIA Mod, Hard

Test Type: 96hr. SNR

Concentration	Rep.		Li	ve Cour	ıt			Temp	perature	(C)	
		0 hr.	24 hr.	48 hr.	72 hr.	96 hr.	0 hr.	24 hr.	48 hr.	72 hr.	96 hr.
Control	Α	10	10	10	10	10	240	25.0	25.0	24.5	24.8
	В	j O	10	10	10	10	24.0	250	<i>35</i> 0	24.5	24.5
10%	Α	10	10	10	10	91	24.0	<i>∂</i> €′0	25.0	24.5	24.5
	В	jo	10	10	io	10	240	25.0	25.0	245	24-8
18%	Α	10	10	9'	9	81	245	25.0	25.0	24.5	240
	В	10	10	91	9	9	245	250	25 n	245	24.0
32%	Α	lo	10	10	10	10_	24.5	25.0	25.0	24.5	24.0
	В	įΟ	10	10	ю	10_	345	25-0	250	24.5	24.0
56%	Α	ان	10	82	7'	2	<i>950</i>	25-0	240	24.5	240
	В	10	10	10	10	10	25.0	25.0	24.0	24.5	24.0
100%	Α	10	10	10	10	10	<i>∂5</i> 0	25.0	240	24.5	24.0
	В	10	10	(0)	10	10	25-0	25-0		24.5	24.0
Initials		TOP	700	you	700	NC	upu	TOP	VAL	700	でし
Date		3/20	7/21	2002	2/23	2/24	2/20	2/21	10122	2/23	264

Concentration	р	Н	D.O. (Cond. (
	0 hr.	96 hr.	0 hr.	96 hr.	0 hr.	96 hr.
Control	7.8	80,0	8.3	6.9	299	352
10%	7.8	79	8.3	6.6	352	400
18%	7.9	8.0	79	6.6	399	451
32%	8.0	8.1	7.8	6.6	469	538
56%	8.1	3.2	7.2	10.5	615	676
100%	82	7.3	59	63	842	943
Initials	Upu	Nc	wor	NC	you	NC
Date	200	2124	000	2124	000	2124

Concentration	Alkalinity (mg/L)	Hardness (mg/L)
Control	60	90
100%	210	3%
Initials	WAY	VISIC
Date	9130	2/20

2124					
_					
	Ø194	0/94	0194	0/24	Ø19A

APPENDIX II OHIO EPA NPDES BIOMONITORING REPORT FORM

Last Revised: 04/13/98

GENERAL INFORMATION

OHIO EPA NPDES BIOMONITORING REPORT FORM

1. Facility Name: Rutgers Organics Corporation

Reporting Date: 07 March 2007

2. Address:

1224 Benton Road Salem, Ohio 44460 Substantive

- 3. Ohio EPA Permit Number: Discharge Criteria 4.Application (NPDES) No.
- 5. Facility Contact: Ralph Pearce 6. Phone No.: (800) 458-3434
- 7. Consultant/Testing Lab Name: American Aquatic testing, Inc.
- 8. Consultant/Lab Contact: Chris Nally 9. Phone No.: (610) 434-9015
- 10. Receiving Water(s) of Discharge: <u>Unnamed Tributary of the Middle Fork of Middle Creek</u>.
- 11. Outfall(s) Tested: 001

Average Daily Flows: on Day Sampled (gal/day)

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Sikgnatyke

Christopher J. Nally, President

Date/

Page _ 1 _ of _ 6

Page _ 2 of _ 6

ACUTE TOXICITY TEST SAMPLING DATA

TABLE

										
Sampling S	ummary for Acute T	Coxicity Tests								
Sample Collection										
Sampling Location & Description	Beginning MM/DD/Time 02/19/07 1300	Ending MM/DD/Time N/A	Weather/Receiving Stream Conditions							
Final Effluent:		,								
Outfall No.: 001										
Type (Grab/Composite): Grab										
Volume Collected: 2.5-gallon										
Upstream Station:	N/A									
Waterbody:										
Station No.:										
Type (Grab/Composite):										
Volume Collected:										
Downstream Station (Near-field):	N/A									
Waterbody:										
Station No.:										
Type (Grab/Composite):										
Volume Collected:										
Additional Stations (If needed):	N/A									
Waterbody:										
Station No.:										
Type (Grab/Composite):										
Volume Collected:										
Waterbody:										
Station No.:										
Type (Grab/Composite):										
Volume Collected:										
1										

OEPA	Permit	No.:			
			TOXICITY	TEST	CONDITIONS

Page 3 of 6

TABLE

Summary of Toxicity Test Conditions

1. Test Species and Age:

2. Test Type and Duration:

3. Test Dates:

4. Test Temperature (°C):

5. Light Quality:

6. Photoperiod:

7. Feeding Regime:

8. Size of Test Vessel:

9. Volume and Depth of Test Solutions:

10. No. of Test Organisms per Test Vessel:

11. No. of Test Vessels per Test Solution:

12. Total No. of Test Organisms

per Test Solution:

13. Test Concentrations (as percent by volume effluent):

14. Renewal of Test Solutions:

15. Dilution and Primary Control Water:

16. Secondary Control Water:

17. Aeration? Before/During Test:

18. Endpoints Measured:

19. If secondary control water used as diluent due to toxicity in primary control water, indicate number of consecutive tests conducted with alternative diluent:

Pimephales promelas - 8 days old

96-hour Static Acute

20 February - 24 February 2007

25.0°C ± 1.0°C

50-100 ft. candles

16 hours light / 8 hours dark

None

1000 mL

500 mL / 92 mm

Ten

Two

20

0, 10, 18, 32, 56, and 100%

None

Moderately Hard Reconstituted Water

N/A

None

LC₅₀ and TU_a

N/A

OEPA	Permit	No.:					
			ACI	UTE	TOXICITY	TEST	RESULTS

Page <u>4</u> of <u>6</u>

TABLE		
Conducted 02/20	Pimephales promelas 96 (genus) (species) 0/07 - 02/24/07 Using Effluent fi dd/yy) (mm/dd/yy)	6 -Hour Static Acute Toxicity Test rom Outfall (number)
	Cumulative Percent Mortality	LC ₅₀ Values
Test Solutions	(Cumulative Percent Affected) a	(EC ₅₀ Values)
	24-Hr 48-Hr 72-Hr 96-Hr	24-Hr 48-Hr 72-Hr 96-Hr
Primary Control/ Dilution Water	0 0 0	<u>>100%</u> <u>>100%</u> <u>>100%</u> <u>>100%</u>
principli water	(<u>0</u>) (<u>0</u>) (<u>0</u>)	$(\underline{N/A})$ $(\underline{N/A})$ $(\underline{N/A})$ $(\underline{N/A})$
Secondary Control	N/A	LC _{so} 95% Confidence Limits
Colleto	() () ()	(EC _{so} 95% Confidence Limits)
10 % Effluent	_0001	24-Hr 48-Hr 72-Hr 96-Hr
	(<u>0</u>) (<u>0</u>) (<u>0</u>) (<u>5</u>)	
18_% Effluent	0 2 2 3	LL N/A N/A N/A N/A
	(<u>0</u>) (<u>10</u>) (<u>10</u>) (<u>15</u>)	UL <u>N/A N/A N/A N/A</u>
32 % Effluent	0 0 0	LL (<u>N/A</u>) () ()
,	(<u>0</u>) (<u>0</u>) (<u>0</u>)	UL (<u>N/A</u>) () ()
56 % Effluent	0 2 3 3	LL = Lower Limit UL = Upper Limit
	(<u>0</u>) (<u>10</u>) (<u>15</u>) (<u>15</u>)	OH = Opper Himit
_100 % Effluent	0 0 0	Calculated TU _a Value:1.0
	(<u>0</u>) (<u>0</u>) (<u>0</u>)	
Near-Field	N/A	Method(s) Used to Determine LC _{so} ,
Sample	() () ()	EC ₅₀ , and Confidence Limit Values:
		Visual Inspection

a-cumulative percent affected is the total percentage of test organisms observed dead, immotile, exhibiting loss of equilibrium, or other defined endpoints (specify below):

SEPA	Permit	No.:	

Page _ 5 of _ 6

TOXICITY TEST CONDITIONS

TABLE

Summary of Toxicity Test Conditions

1. Test Species and Age:

2. Test Type and Duration:

3. Test Dates:

4. Test Temperature (°C):

5. Light Quality:

6. Photoperiod:

7. Feeding Regime:

8. Size of Test Vessel:

9. Volume and Depth of Test Solutions:

10. No. of Test Organisms per Test Vessel:

11. No. of Test Vessels per Test Solution:

12. Total No. of Test Organisms per Test Solution:

13. Test Concentrations (as
 percent by volume effluent):

14. Renewal of Test Solutions:

15. Dilution and Primary Control Water:

16. Secondary Control Water:

17. Aeration? Before/During Test:

18. Endpoints Measured:

19. If secondary control water used as diluent due to toxicity in primary control water, indicate number of consecutive tests conducted with alternative diluent: Ceriodaphnia dubia - <24-hours old

48-hour Static Acute

20 February - 22 February 2007

25.0°C ± 1°C

50-100 ft candles

16 hours light / 8 hours dark

None

30 mL

25 mL / 25 mm

Five

Four

20

0, 10, 18, 32, 56, and 100%

None

Moderately Hard Reconstituted Water

N/A

None

 LC_{50} and TU_{a}

N/A

DEPA	Permit	No.:					Page	6	of	6
			ACUTE	TOXICITY	TEST	RESULTS				

7	አ	D	т	₽	
1	_	р	ш	œ	

Results of a		dubia (species)		-Hour Static Acute Toxicity	Test			
Conducted 02/20/07 - 02/22/07 Using Effluent from Outfall 001 (mm/dd/yy) (mm/dd/yy) (number)								
	Cumulative Per	cent Mor	tality	LC₅o Values				
Test Solutions	(Cumulative Per	cent Aff	ected) ª	(EC ₅₀ Values)				
	24-Hr 48-Hr	72-Hr	96-Hr	24-Hr 48-Hr 72-Hr	96-Hr			
Primary Control/ Dilution Water	<u>0</u> <u>0</u> (<u>0</u>)	(()	>100% >100% (<u>N/A</u>) (<u>N/A</u>) ()	()			
Secondary Control	<u>N/A</u> () ()	()	()	LC ₅₀ 95% Confidence Lim				
% Effluent		, ,		24-Hr 48-Hr 72-Hr	96-Hr			
18_% Effluent	(<u>0</u>) (<u>0</u>) 0 0 (<u>0</u>) (<u>0</u>)	()	()	LL N/A N/A UL N/A N/A				
32_% Effluent	<u> </u>	()	()	LL (<u>N/A</u>) (<u>N/A</u>) () UL (<u>N/A</u>) (<u>N/A</u>) ()	() ()			
56_% Effluent	<u> </u>	()	()	LL = Lower Limit UL = Upper Limit				
100_% Effluent	<u> </u>	()	()	Calculated TU _a Value:	1.0			
Near-Field Sample		()	()	Method(s) Used to Determin EC ₅₀ , and Confidence Limit Visual Inspection				
a-cumulative percent affected is the total percentage of test organisms observed dead, immotile, exhibiting loss of equilibrium, or other defined endpoints (specify below):								

ATTACHMENT 5

TWO CHRONIC TOXICITY EVALUATIONS FEBRUARY 20 THRU 27, 2007 NEASE CHEMICAL SITE, SALEM, OHIO

RESULTS OF TWO CHRONIC TOXICITY EVALUATIONS OF RUTGERS ORGANICS CORPORATION, SALEM SITE LAGOON WATER TREATMENT PLANT FINAL EFFLUENT

AAT JOB # 51 - 01 -80

20 February - 27 February, 2007

Report Prepared for:

Rutgers Organics Corporation 201 Struble Road State College, Pennsylvania 16801

Report Prepared by:

AMERICAN AQUATIC TESTING, INC. 890 NORTH GRAHAM STREET ALLENTOWN, PENNSYLVANIA 18109

INTRODUCTION

A set of two 7-day daily renewal chronic toxicity tests were conducted with larval fathead minnows, *Pimephales promelas* (*P. promelas*) and the freshwater cladoceran, *Ceriodaphnia dubia* (*C. dubia*) to determine the relative toxicity of final effluent from the Rutgers Organics Corporation Lagoon Water Treatment Plant, Salem, Ohio. The larval fathead survival and growth chronic test and the *C. dubia* survival and reproduction test were conducted from 20 February through 27 February 2007. The toxicity evaluations were conducted by American Aquatic Testing, Inc., Allentown, Pennsylvania.

All tests were performed according to procedures outlined in Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms, 4th Edition (EPA/600/4-90/027F), Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Water to Freshwater Organisms, Third Edition (EPA/600/4-19/002) and Reporting and Testing Guidance for Biomonitoring Required by the Ohio Environmental Protection Agency, October 1991.

MATERIALS

TEST ORGANSIMS

Fathead Minnow, Pimephales promelas

Larval fathead minnows used in chronic testing were obtained from cultures maintained in house at ABS, Inc. Test age organisms are maintained in shallow depth basins containing 10L of moderately hard reconstituted water and are fed newly hatched *Artemia* (brine shrimp) nauplii twice a day up until test initiation. The test organisms were < 48 hours old at test initiation. No acclimation of these test organisms was required as they were raised in moderately hard reconstituted water, which was used for testing.

Freshwater Cladoceran, Ceriodaphnia dubia

Cladoceran neonates, C. dubia were obtained from AAT, Inc.'s in-house cultures. Cultures for generating test age (<24 hours old) neonates are maintained as single cultures in 30 mL soufflé cups containing 15 mL of moderately hard reconstituted water. These adults are transferred daily into fresh culture water and are fed a combination of a unicellular green alga (Selenastrum capricornutum) and a yeast/Cerophyll/trout chow (YCT) suspension. Broods released during an 8-hour period were pooled and used to initiate the chronic toxicity test. No acclimation of these test organisms was required as they were raised in moderately hard reconstituted water, which was used for testing. Neonates were released between 0900 and 1400 of 20 February 2007.

DILUTION WATER

Moderately hard reconstituted water was prepared in accordance to procedures outlined in EPA/600/4-90/027F and was used as dilution/control water for the toxicity tests. Deionized water (Specialty Filtration Products) and reagent grade chemicals were used to achieve the following concentrations: 96 mg/L of NaHCO₃, 60.0 mg/L of MgSO₄ and 4.0 mg/L of KCl and 60.0mg/L of CaSO₄ 2H₂O.

TEST MATERIAL

The material tested was final effluent collected by Howells and Baird personnel with a grab sampler placed at the outfall. Three grab samples were collected for each of the two chronic toxicity tests.

The sample collected February 19, 2007 was used for the two chronic tests starting February 20, 2007 and for Day 2. The sample collected February 21, 2007 was used for renewal for Days 3 and 4. The sample collected February 23, 2007 was used for renewal for Days 5,6 and 7. Chain-of-Custody forms accompanied the sample. Tests were initiated prior to the expiration of the 36-hour holding time.

METHODS

P. promelas larvae (<48 hours old) were exposed to the effluent samples for seven days under static, daily renewal conditions. Test organisms were exposed in groups of 10 in 1 L glass beakers containing 500 mL of test solution with four replicates per concentration (40 organisms per concentration). The test organisms were fed twice each day with Artemia nauplii from test initiation until day six. The test organisms were not fed for the last 16 hours of the test. Daily observations were made during test material exchange and the numbers of live animals were recorded on the appropriate benchsheets. Any dead animals were removed from the test chambers.

The fathead larval test was terminated at the end of seven days. All live test organisms from each replicate chamber were counted, rinsed with deionized water and transferred as a group to a pre-weighed aluminum pan.. Pans with test organisms were dried at 105.0 °C for a minimum of six hours before being placed in a dessicator to cool. Each pan was weighed to the nearest 0.01 mg and the average test organism weight was determined by dividing by the original number of test organisms present (10).

C. dubia neonates (<24 hours old) were exposed to the effluent sample for six days under static, renewal conditions. Test organisms were exposed individually in 30 mL soufflé cups containing 15 mL of test solution with 10 replicates per concentration (10 organisms per concentration). At test material renewal, the test organisms were fed a combination of YCT (yeast, Cerophyll and trout-chow) and the green alga, S. capricornutum, daily during the test exposure. Daily observations of the number of live animals were made as well as the number of neonates produced and recorded on the appropriate benchsheets.

The C. dubia test was terminated at seven days. The total number of neonates produced at each concentration was divided by the number of adult test organisms present to determine the average number of neonates produced.

Both sets of test chambers were placed in randomized positions in a temperature controlled environment maintained at 25 ± 1 ° C for the duration of the test exposure period. The highest concentration used for exposure was 100 %. A 0.30 dilution schedule was used to prepare sample concentrations of 30%, 10%, 3% and 1%, by volume. A control sample consisting of 100 % dilution water was also tested.

RESULTS

FATHEAD MINNOW SURVIVAL AND GROWTH

An NOEC (No-Observable-Effect-Concentration) value of >100% for survival was produced. An NOEC value of >100% for growth was produced. As a result, the TUc for this test is 1.0 (100%/NOEC), for the growth endpoint.

CERIODAPHNIA DUBIA SURVIVAL AND REPRODUCTION

An NOEC value of 100% for survival was produced. An NOEC value of 100% for reproduction was produced. As a result, the TUc for this test is 1.0 (100%/NOEC), for the reproduction endpoint.

Table I.

Fathead Minnow Physical/Chemical Measurements Summary

CLIENT:

Rutgers Organics Corp., Salem Lagoon Water Treatment Plant

TEST:

7-Day Chronic Toxicity Test

DATE:

20 February -27 February 2007

	Temp.	° C	pН	Std. Units	D. O.	ppm	Cond.	μmhos
CONC.	Min	Max	Mın	Max	Min	Max	Min	Max
Control	24.0	25.0	7.8	8.2	7.0	8.3	296	302
1%	24.0	25.0	7.8	8.1	6.8	8.3	}	
3%	24.0	26.0	7.8	8.2	6.7	8.3		
10%	24 0	26.0	7.9	8.2	6.8	8.4		
30%	24.5	25.5	7.9	8.2	6.9	8.3		-
100%	24.0	25.5	7.9	8.4	6.0	7.5	746	859

	Alkalin	ity mg/L	Hardnes	s mg/L	Chlorine	mg/L
SAMPLE	0 %	100 %	0 %	100 %	0%	100 %
01	60	210	90	320	0	0.00
02	70	210	100	350	0	0.00
03	70	180	100	380	0	0.01

Table II.

Ceriodaphnia dubia Physical/Chemical Measurements Summary

CLIENT:

Rutgers Organics Corp., Salem Lagoon Water Treatment Plant

TEST:

7-Day Chronic Toxicity Test

DATE:

20 February -27 February 2007

	Temp.	°C	pН	Std. Units	D. O.	ppm	Cond.	μmhos
CONC.	Min	Max	Min	Max	Mın	Max	Min	Max
Control	24.0	25.5	7.8	8.3	8.0	8.3	296	302
1%	24.0	25.5	7.8	8.3	8.0	8.4		
3%	24.0	25.5	7.8	8.4	7.9	8.4		
10%	24.0	25.5	7.9	8.4	7.9	8.4		1
30%	24.0	25.5	7.9	8.5	7 5	8.4		
100%	24.5	25.5	7.9	8.6	6.0	8.4	746	859

	Alkalin	ity mg/L	Hardnes	s mg/L	Chlorine	mg/L
SAMPLE	0 %	100 %	0 %	100 %	0 %	100 %
01	60	210	90	320	0	0.00
02	70	210	100	350	0	0.00
03	70	180	100	380	0	0 01

APPENDIX I

RAW DATA

RESULTS OF TWO CHRONIC TOXICITY EVALUATIONS OF RUTGERS ORGANICS CORPORATION, SALEM SITE LAGOON WATER TREATMENT PLANT FINAL EFFLUENT

20 February -27 February 2007

Ceriodaphnia dubia, Survival and Reproduction Test American Aquatic Testing, Inc.,

_							Sun	<i>i</i> va	I/F	?ep	rodi	ucti	on [Data	a								
	Co	nc.										Jep	icate)									
Day	Co.	ntral		1		2	. (3		4		5	-	3		7	1	8		9	1	0	Initals
1	N	В	0		0		0		0		0		0		0		0		0		0		70Rs
2	N	В	0		0		0		0		0		0		0		0		0		0		MPP
3	N B O O O O O O O O																Tac						
4.	N B 5, 6, 8, 7, 7, 6, 7, 6, 7, 7,															2							
5																2	P						
6	N	В	9	2	10	2	10	2	9	2	7	2	10	2	7	2	0		13	2	0		ureso
7	N	В	11	3	114	3	12	3	15	3	17	3	14	3	15	3	11	3	17	3	10		mero
8	N	В	Ĩ																				
	Tot N	Tot B	85	3	70	3	30	3	31	3	31	3	30	3	29	3	30	3	[3]	3	29	3	Tot A
		Averag	e Ne	ona	tes p	er F	ema	ale =	<u>.</u> 3	Ō,	<u>a</u>		% F	ema	ales	with	3rd	Bro	od =	= [(00	 _ 	10

	Co	nc.										Repl	icate	}									
Day	1	%				2		3		1	•	5	- 6	3		7		3	·	9	1	0	Initals
1	N	В	0		0		0		0		0		0		0		0		Ø		0		70%
2	N	В	0		Ö		0		0		0		0		0		0	\Box	0		0		MPP
3	N	В	0		0		0		٥		0	,	0		0		0		0		0		7000
4	N	В	6	/	5	1	7	/	8	1	7	1	6	/	7	/	3	/_	7	/_	6		82
5	N	В	0		0		0	\sim	0		0		0		0		0		0			2	87
6	N	В	12	2	11	2		2	8	2	1	2	12	٧	13	2	7	2	11	2	0		Mero
7	N	В	14	3	\prod	3	13	3	14	3	13	3	14	3	15	3	9	3	17	3		3	RP
8	N	В																					
	Tot N	Tot B	132	3	M	3	31	3	30	3	31	3	32	3	35	3	19	3	35	3	98	3	Tot A

Average Neonates per Female = 30.0 % Females with 3rd Brood = 100

	Co	nc									F	lep!	icate	•									L
Day		3%		1	2	2	3	3	4	1	Ę	5	•	3		7		3		3	1	0	Initals
1	N	В	0		0		0		٥		0		0		0		0		0		0		7060
2	N	В	0		0		0		0		0		0		0		0		0		0		MEND
3	N	В	0		0		0		0		0		0		0		0		0		0		100
4	N	В	7	1	0		6		4		7	7	6	1	8		4	1	4	/	8	1	
5	N	В	10		0		0		0		0		0	•	12	2	0		0		13	2	PR
6	N	В	\prod	2	12	٦	12	2	12	7	13	て	12	2	0		10	2	10	2	0		NED
7	N	В	ĬĬ.	3	14	3	12	3	ile	3	15	3	12	3	16	3	lσ	3	10	3	11	3	mero
8	N	В															L.						
	Tot N	Tot B	39	3	32	3	30	3	32	3	35	3	30	3	36	3	24	3	24	3	32	3	Tot A

Average Neonates per Female = 30.4

% Females with 3rd Brood = 1

(N=Neonates,	B=Broods,	A=Alive
--------------	-----------	---------

Observations:	·	 	 	
		 	 	
CHCDLCRP.wk3				

Project Number: 51-01-80

Beginning Date & Time: 2-20-07 1510 Ending Date & Time: 2-27-07 1530

Ceriodaphnia dubia, Survival and Reproduction Test American Aquatic Testing, Inc.,

Survival / Reproduction Data

	Co	nc.										lepl	cate	9									
Day	10	96			2	2	. ;	3	1	1	į	5	(ĵ '	7	7	8	3	;	9	1	0	Initals
1	N	В	0		0		0		0		0		0		0		0		Ö		0		70Pp
2	N	В	0		0		0		0		0		٥		0		0		0		0		Nep
3	N	В	9		0		0		0		0		0		0		٥		0		0		100
4.	N	В	0	/	6	1	7	1	7	1	2		4		4	1	4	1	6		5		A
5	N	В	0		0		0		0		Ó		0		0		0		12	2	10	2	A
6	N	В	10	2	14	2	0		16	2	0		0		14	Z	14	2	16	3	14	3	MPP
7	N	В	20	3	20	3	9	2	20	3	9	2	8	2	16	3	20	3	0		0		MOP
8	N	В																					
	Tot N	Tot B	36	3	40	3	16	a	43	3	16	2	/a	え	34	3	38	3	34	3	29	3	Tot A
																							$\Box \wedge$

Average Neonates per Female = $\frac{9.8}{}$ % Females with 3rd Brood = $\frac{10}{}$

	Co	nc.									F	Repl	icate	3									
Day	3	2%		1	1	2	3	3	4	4		5	(3		7		3		9	1	0	Initals
1	N	В	0		0		0		0		0		0		0		0		0		0		780
2	N	В	0		Q		0		0		0		0		0		۵		0		0		Here
3	N	В	0		0		0		0		0	-	0		٥		0		0		0		TAR
4	N	В	4	1	4	1	6	/_	Z		0	1	6	1	6	1	7		17	1	7		98
5	N	В	0		0		0		O		0		0		0		0		0		13	2	1
6	N	В	12	2	12	て	12	٦	14	7	0	~	12	2	14	7_	13	2	15	2	17	3	MEG
7	N	В	14	3	12	3	ار	3	18	3	14	3	12	3	14	3	15	3	0		0		MP
8	N	В																					
	Tot N	Tot B	30	3	98	3	30	3	39	3	30	3	30	3	34	3	35	3	22	Q	37	3	Tot A
																·-							$\Gamma 7 \overline{\wedge}$

Average Neonates per Female = 31.5 % Females with 3rd Brood = 90

	Co	nc.										Repl	icate	•									
Day	10	040		1	2	2		3	4	1	Ę	5	•	3	7	7	8	3	ç	9	1	0	Initals
1	N	В	0		0		0		0		0		0		0		0		0		0		70°
2	N	В	0		0		0		0		0		0		0		2		0		D		Mero
3	N	В	0		0		0		0		0		0		0		0		0		0		740
4	N	В	7	1	6	,	5	1	6	1	5	1	5	<u> </u>	7	1	7		\square	,	5		#
5	N	В	0		0		0		0		0		0		0		0		0		12	2	
6	N	В	13	2	ii	2	\prod	٦	11	ک	9	2	13	2	11	2		2	Π	2	0		MPY
7	N	В	13	3	11	3	13	3	13	3	15	3	13	3	15	3	11	3	15	3	12	3	Myo
8	N	В																					
	Tot N	Tot B	33	3	28	3	M	3	30	3	29	3	31	3	33	3	29	3	33	3	29	3	Tot A

Average Neonates per Female = 30.4 % Females with 3rd Brood = 100 (N=Neonates, B=Broods, A=Alive)

Observations:		<u> </u>	 ·	
			 ····	
CHCDLCRP.wk3			 	

Client/Toxicant:_	51
Job Number:	01-80
Species: []	dubia

Beginning Date & Time: 2-20-07 1510 Ending Date & Time: 27-07 1530

Freshwater Chronic Test American Aquatic Testing, Inc., Physical / Chemical Parameters Initial Readings

	Day								
Parameter	Concentration	. 1	.2	3	4	5	6	7	8
T	Control	NO	-	25.0	25,20	24.0	5.0	25.D	
e	1%	240	25.0	0-	2510	24.0	&O	25 o	
m	3%	240	25.8		250	24.0	&-0 \$	25.0	
ļ p	10%	240	25.0		250		25.0	25.0	
	30%	24.5	25.0	25.0	250	24.5	25.0	25.0	L
(°C)	100%	250		250	250	25.0	80	25.0	
							L	<u> </u>	
	Control	8.3	8.3	8.1	8.1	8.0	8.3	8,2	
	1%	73	8.3	8.i	8.1	8.0	8.3	8.2	
Dissolved	3%	8.3	3.3	81	8.1	29	8.1	8.2	
Oxygen	10%	8.3	8.4	8.0	8.0	29	8.1	8.2	
,	30%	M.Ý	8.3	7.9	7.9	7.5	7.6	8.1	
(mg/L)	100%	6.9	75	6.9	8.8	6.0	6.2	7.1	
	Control	7.8	2.1	8.0	81	8.2	8.0	8.1	
	1%	7.8	8.1	80	8.1	8.0	8.0	8.1	
pH	3%	7.8	8.1	8.0	8.2	8./	8-0	8.1	i
	10%	79	8.1	8.0	8.2	8.1	0.8	8.(
	30%	80	8-1	8.1	8.2	81	<u>ጉ</u> ዓ	8.1	
	100%	8.2	812	8,2	8.2	8.1	7.9	8.1	
			<u> </u>						
	Initials	UN	1780	MSP	TAP	8	Mp	MSP	
	Date	100	2/21	2/22	2/23	alay	1225	2/26	
		1	Final C	nibba(ae.	•	•	- 1	

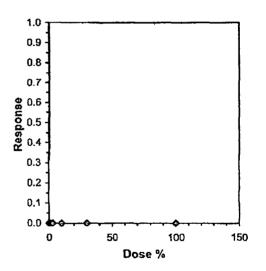
Conductivity (µmhos/cm)							
Date	Control	100%					
19120	296	842					
2/22	30/	859					
02/24	302	746					
Initials		were					
Alkalin							
Date	Control	100%					
220	W	20					
2/22	70	210					
2/24	10	180					
	ss (mg/L						
Date	Control	100%					
820	90	390					
2/2	100	<i>35</i> 0					
224	100	280					
7.77.7	1181	All C					
Initials	W W	W					

	Final Readings								
					D	ay			
Parameter	Parameter Concentration		2	3	4	5	6	7	8
T	Control	25.5	25.5	25.0	26.6	25.0	25.0	25.0	
e	1%	25.5	25.5	25.0	26.6	26.0	25.0	T-0	
m	3%	25.0	255	25.0	25.6	25.0	25.0	B.0	
р	10%	25.0	25.5	25.0	26.5	25.0	250	25.0	
1 :	30%	24.5	24.5	25.6	25,5	25.0	25.0	3.0	
(°C)	100%	24.5	250	25.0	25,5	25.0	25.0	15.0	
		<u> </u>	<u> </u>	<u> </u>	<u>l</u>		L	<u> </u>	
	Control	8.5	8.3	8.2	83	8.1	8,	8.1	
1	1%	8.2	8.4	8.2	8.3	8./	8.1	8.1	
Dissolved	3%	8.3	8.4	8.3 8.3	8.3	8.2	8.2	8.1	
Oxygen	10%	8.3	8.4	8.3	8.3	8.5	8.2	Q.8	
	30%	8.4	8-4	8.3	8.4	8.2	9.1	90	
(mg/L)	100%	18.4	8.4	8.3	8,4	8.2	8.0	8.0	
							<u> </u>	<u> </u>	
	Control	83	82	8.2	8.3	8.1	8.2	8.0	
	1%	8.2	82	8.2	8.3	8,2 8.3	8.2	8.0	
pH	3%	8.2	82	8.2	8.4	8.3	83	8.0	
1	10%	8.3	82	7.3	84	84	9.3	0.8	
	30%	8.3	82	8.4	1875	8,4	3.3	8.1	
	100%	8.5	85	2,6	8.6	8.5	3.5	8.3	
	-		0						
	Initials	Hho	N	THO	18/	2/	MAP	NOO	
FWCHPAPR.wk3	Date	2/21	BAR	2/23	00/91	02/05	12/26	227	

Chlorine (mg/L) Date Control 100%							
Control 100%							
00.0	0.0						
0.00	ÓÓ						
D.00	0,0						
O4 Added	l (mg/L)						
Control	100%						
Var	100						
	Control 0.00 0.00						

bserva	oservations: `							
	·							

			Ceriod	aphnia Su	rvival and	Reprod	uction Tes	t-7 Day	Survival	
Start Date:	2/20/2007		Test ID:	510180cd			Sample ID):	Rutgers	
End Date:	2/27/2007		Lab ID:	AAT			Sample Ty	уре:	24 HOUR	CO
Sample Date: Comments:			Protocol:	EPAF 94-	EPA/600/4	I- 91/002	Test Spec	ies.	CD-Cerio	laphnia dubia
Conc-%	1	2	3	4	5	6	7	8	9	10
Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000
3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
30	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000


			Not				Fisher's	1-Tailed	Isotonic		
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean	
Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000	
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000	
3	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000	
10	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000	
30	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000	
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000	

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	100	>100		1	
To a describer on Combest					

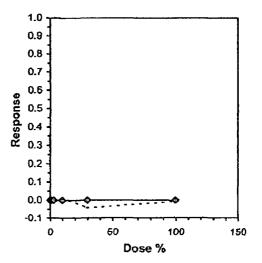
Treatments vs Control

Trodynome 10 control								
		Lir	Linear Interpolation (200 Resamples					
%	SD	95% CL_	Skew					
>100								
>100								
>100			1.0					
>100			0.9					
>100			+					
>100			0.8					
>100			0.7					
	>100 >100 >100 >100 >100 >100 >100	>100 >100 >100 >100 >100 >100 >100	% SD 95% CL >100 >100 >100 >100 >100 >100 >100					

Liz

Liz

	Ceriodaphnia Survival and Reproduction Test-Reproduction											
Start Date:	2/20/2007		Test ID:	510180cd			Sample ID);	Rutgers			
End Date:	2/27/2007		Lab ID:	AAT			Sample Ty	ype:	24 HOUR	CO		
Sample Date:			Protocol:	EPAF 94-I	EPA/600/4	1-91/002	Test Spec	ies:	CD-Ceriod	daphnia dubia		
Comments:												
Conc-%	1	2	3	4	5	6	7	8	9	10		
Control	25.000	30.000	30.000	31.000	31.000	30.000	29.000	30.000	37.000	29.000		
1	32.000	27.000	31.000	30.000	31.000	32.000	35.000	19.000	35.000	28.000		
3	29.000	32.000	30.000	32.000	35.000	30.000	36.000	24.000	24.000	32.000		
10	36.000	40.000	16.000	43.000	16.000	12.000	34.000	38,000	34.000	29.000		
30	30.000	28.000	30.000	39.000	30.000	30.000	34.000	35.000	22.000	37.000		
100	33.000	28 000	29.000	30.000	29.000	31.000	33.000	29.000	33.000	29.000		


				Transform	n: Untran	sformed		_	1-Tailed			Isotonic	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean	
Control	30.200	1.0000	30.200	25.000	37.000	9.723	10				30.383	1.0000	
1	30.000	0.9934	30.000	19.000	35.000	15.476	10	0.078	2.287	5.879	30.383	1.0000	
3	30.400	1.0066	30.400	24.000	36.000	13.176	10	-0.078	2.287	5.879	30.383	1.0000	
10	29.800	0.9868	29.800	12.000	43.000	37.394	10	0.156	2.287	5.879	30.383	1.0000	
30	31.500	1.0430	31.500	22.000	39.000	15.570	10	-0.506	2.287	5.879	30.383	1.0000	
100	30.400	1.0066	30.400	28.000	33.000	6.431	10	-0.078	2.287	5.879	30.383	1.0000	

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Kolmogorov D Test indicates non		1.51049		1.035		-0.8438	2.11683			
Bartlett's Test indicates unequal	variances (31.4394		15.0863			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	100	>100		1	5.87867	0.19466	3.53667	33.0463	0.9903	5, 54

Treatments vs Control

Linear Interpolation (200 Resamples)

Point	%	SD	95% CL	Skew
IC05	>100			
IC10	>100			
IC15	>100			
IC20	>100			
IC25	>100			
IC40	· >100			
IC50	>100			

Client/Toxicant: 5/	Beginning Date & Time: 2-20-07 156
Project Number: 01-30	Ending Date & Time: 29101 1330
Species: Pyronelas	Ending Date & Time: 29151 1330 Hatch Date: 02/18/07
· · · · · · · · · · · · · · · · · · ·	•

Chronic Test American Aquatic Testing, Inc. Live Count

A	Conc.	Rep	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
B			10	10	10	10	10	16	10	10
D D D D D D D D D D	1		10	10	10	10		10		10
D D D D D D D D D D	(ontrol	С	10	10	10	(0	1		10	
1% C 10 10 10 10 10 10 10 10 10 10 10 10 10		D	D	D	10	10			10	10
1% C 10 10 10 10 10 10 10 10 10 10 10 10 10		A	10	10	10	10	10	Oj	10	10
1% C 10 10 10 10 10 10 10 10 10 10 10 10 10	. /	В	10	10	10.	10	10	91	9	9
D D 10 10 10 10 10 10	1%		10	10	10	lo	(0	10	10	10
3% B 10 10 10 10 10 10 10 10 10 10 10 10 10		D		10	10	lo	19	10	10	10
10% C 10 10 10 10 10 10 10		Α	10	10	10	10	10		10	10
10% C 10 10 10 10 10 10 10	- 1		10	10		ID	10	10	10	
D D 10 9' 9 8' 8 8 8 8 8 8 8 8	3%		10	10		l to	10	10	10	10
10% B 10 10 10 10 10 10 10 10 10 10 10 10 10		D	10	10			8,	8	8	
D 10 10 10 9 9 9 9 9 9 9 9 9			10	10	9'	9	8'	8	8	8
D 10 10 10 9 9 9 9 9 9 9 9 9	1 0/	В	10				10	10	10	10
A D 10 10 10 10 10 10 10	10%			10	9'			9		
30% B 10 10 10 10 10 10 10		D		(6	10 -	9'				9
Sole C 10 10 10 10 10 10 10				10	10	10	91.	٦	4	
A D 10 10 10 10 10 10 10	- a/	В		10	 	10	[0	lo		10
A 10 10 10 10 10 10 10	50%		10	10	10			10		10
100% B 10 10 10 10 10 10 10		·	10	10	10	10	<u> </u>	10	10	10
D				ID	10	(0	10			10
D	1 col	В	10	10	10		10		10	
D	100%		10	10		9'	1 1	9		
Initials Were The Were NC were MKP VOL		D	10	10	10	10	110	10	10	1.0
Initials & Wee Top Wer NC Wer MAP YOU	•									
Initials I was too was NC was MKP VOL							J			
Initials I was too was NC was MAP VOL										
								1		
Date (02/0) 7/21 2/21 7/12 2/24 7/25 2/26 9m	Initia	s	X.	MES	7700	NEB		WEP	MP	Var
	Date	3	02/20	2/21	2/22	2/23	2/24	7/25	2/26	200

Observations:	
, , , , , , , , , , , , , , , , , , , ,	
1	

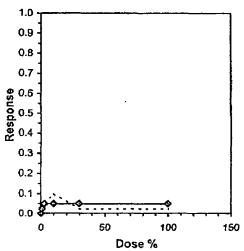
				,				
Client/Toxica Project Num Species:	int:		51.			Beainning	Date & Time	2-20-07
Project Num	ber:	01	180			Ending D	ate & Time:	22702 1330
Species:	ρ.,		las			Hatch Dat	te: <i>o2/8/67</i>	22707 1330
- (*	J		4.5.4					
				Chron	ic Test			
			Απ		itic Testing, Inc	.		
					nt Data			
			Α		(B - A) * 1000 = C	D	C/D	C/E
0/0			weight of	weight of	dry weight of	# of	mean dry	IC ₂₅ & NOEC
10		Pan	boat	boat & fish	fish	surviving	weight	calc. weight
Conc.	Rep	#	(g)	(g)	(mg)	fish	(mg)	(mg)
	Α	1	400820	0.01202	3.82	10	0.382	0.382
0	В	2		00/245	4.37	10	0.437	0.437
Control	С	3	0.01809	00/143	3.34	10	0.334	0.334
	D	4	0.00740	00 1089	3.49	10	0.349	0.349
	A	5	0.00753	0.0 1107	3.54	10		0.354
1	В	Ų	0.00746	001190	3.74	9		0.374
1	С	7		001131	4.24	10		0.454
	D.	8		po 1029	3.71	10		0.371
	Α	9	0.00724	1	3.77	10		0.384
7	В	10	000780		3.77	10		0.377
3	C.	11	000670	001079	4.09	[9		0.409
	D	12		p.01949	3,91	<u> </u>	<u> </u>	0.391
	A	13		001077	3.08	8		0.308
10	B	14	0.00809	00/163	3,54	10		0.354
•	D	114		0.01188	3,92	Q Q		0.392
	A	17		p 0 1303	3.760	0		0.0100
	B	18		0.01203	7.00	10		0.386
30	C	19	0.00761			10	<u> </u>	0.414
	D	7.0	000720	0.0 1153	3,93	10		0.460
*************************************	A	u		00 1093	4.00	10		0.406
	В	22	0007.58	ho 1179	4.21	10		0.421
100	C	23	000663	0.00998	3.35	Ŋ	-,	0.335
•	D	24	0.00676	00/107	4,31	10		0.431
20-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	Α			1		1	}	
	В			ţ				
	С							
	D	<u> </u>	I					
	lni	tials	1/Au	Tha	1 tha	W	+hd	tha
	D	ate	2/91	2/28/07	2/28/07	202	2/28/07	2/28/07
	E	= Origi	inal number	of organisms	at test initiation,	adjusted		

Observations: (3.7) \ \(\mathbb{E} \mathbb{E} \, \alpha \) \(\mathbb{E} \mathbb{E} \, \alpha \) \(\mathbb{E} \mathbb{E} \, \alpha \) \(\mathbb{E} \, \mathbb{E} \, \alpha \) \(\mathbb{E} \, \mathbb{E} \, \mathbb{E} \, \mathbb{E} \) \(\mathbb{E} \, \mathbb{E}

CHPHWT.wk3

	•											
011		/					D!	-! D-	1. 0 T:	" - ·	W-07	1660
Client/Toxica Job Number		<u> </u>					Ending Begini	ning va	10 & 11 & Time	me: 470	1.0	1420
Species:	P. gronel	<i>y</i> . (<u>~</u> ~				rnomi	y Daio (× 111110		'/0	1,200
	1. Flomen	<u> </u>	_	Fresh	water	Chro	nic T	est				
			A	merica	n Aqu	atic To	esting,	, Inc.,				
			Ph	ysical	/ Che	mical	Parar	neters				
			·			Readii av	ngs			į		
Parameter	Concentration	. 1	2	3	4	5	6	7	8	Cond	uctivity (u	mhos/cm)
T	Control	240	25.0		250	24,5	75.0	25.0		Date	Control	100%
е	1%	240	25.0	<i>15.</i> 0	25/0			25.0		920	296	842
m	3%	240		25.0	25.0	24.0	3.0	25.0		2/22	301	859
р	10%	240		25.0		24.0		25.0		224	30a	746
	30%	JU5.	25,0			24.5		25.0				
(°C)	100%	<i>95</i> 0	25.0	25.0	2510	26.0	1200	25.0		1 To 1	<u> </u>	1
		V 0	(A) (A)	100		0 -		1 4 0		Initials		VOL
	Control	8.3	83	81	8-1	8.0	8.3	3.2				
Dissolved	1%	8.3	8.3	8.1	8-1	75	8.3	8,2 8,2		Date A 20		
Oxygen	3%	8.3	8.3 8.4	8.0	8.0		8.1	8.2		2/22		910 910
Oxygon.	30%	79	8.3	7.9	7.9	7.5	76	8.1		2/24	70	189
(mg/L)	100%	(29	25	19	6.8		6.2	7.1		2927	<u> </u>	185
, ,		W.	7.0	-U-	0.0		0.0	///			L .	
	Control	78	8.1	4.0	8.1	8.2	8.0	87		Hardne	ss (mg/L	as CaCO,)
	1%	78	8.1	8.0	8.1	80	8.0	87		Date	Control	100%
pН	3%	78	8.1	8.0	8.2	8.1	8.0	8,1		2/20	JAG S JOI S	320
	10%	7.9	8.1	80	8.2	18.1	8.0	8,1		2/22		J50
	30%	8.0	8.1	8.1	8.2	8,1	7.9	8.1	_	2124	100	380
	100%	82	8.2	82	8.2	8.1	7.9	81				
	Initials	VAL	<u> </u>	N/A	<u> </u>	1 9/	1.6-0	J Λ		Initials)	1.01
	Date		thd Dai	2/27	700	02/24	MP 2/25	2/26		minais		lipu
	Date	Dias	Final F	l 42/ Readin		10407	1-1-0	12/24		· ·	hlorine (n	00/11
1		<u> </u>		1044		ay				Date		
Parameter	Concentration	1	2	3	4	5	6	7	8	2120		0.00
T	Control	24.5	24.5	24.5	245	25.0	75.0	35.5		2/22	000	ስ ስለ
е	1%	245	24.5		24.5	25,0	25.0	255		2/24	0.00	0.01
m	3%	24.5	24.5	24.5	34.2	250	24.5	240				
p	10%	542	24.5		24.5	250		260		NaS	O4 Added	1 (mg/L)
(°C)	30%	24.5	24.5		SH 2	250		255		Date:	Control	1000/
(°C)	100%	24.5	24.5	250	21/2	25.0	24.5	25.5		Date	Control	100%
	Control	h c	7.5	72	1.0	7.4	7.5	74			 	
,	1%	7.5	7.3	7.3	68	7.4.	7.5	7.3				
Dissolved	3%	7.5	73	7.1	6.7	2.4	7.5	7,1	 _			
Oxygen	10%	7.7	73	7.3	6.8	7.5	7.5	12		Initials	ha.	VAN
'	30%	7.2	73	7.3	6-9	5.4	7.5	7.1				
(mg/L)	100%	7.3	7,2	7.3	6.4	2.2	7.3	72				
							``			Observati	ons: `	
	Control	7.9	8.0	8.0	(B)	8.0	8.1	7.9				
	1%	7.9	8.0	8.5	8.0	7.9	8.0	79				
рН	3%	7.9	7.9	8.0	J.D	7.9	8.0	7.9				
	10%	7.9	7.9	8.0	30	7.9	80	80				
	30%	8.0	80	8.2	14.	8,0	81	8.3				
	100%	18.4	8.2	85	183	8,3	84	18/3				
L	Initials	1 1 1	1110	1000	113	4/	104/1	NK1 /	<u> </u>			
PWCHPAPR.wk3		10 (MAP	780	224	60/12	MP					
THE PROPERTY OF THE PARTY OF TH	Date	MAL	12/2	10705	10101	62/23	2/26	KANA	L	İ		

Liz

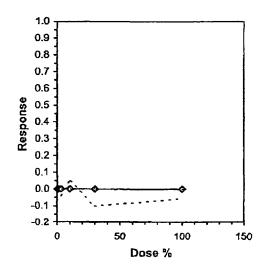

	Larval Fish Growth and Survival Test-7 Day Survival										
Start Date:	2/20/2007		Test ID:	510180pp	Sample ID:	Rutgers					
End Date:	2/27/2007		Lab ID:	AAT	Sample Type:	PREPARED					
Sample Date: Comments:			Protocol:	EPAF 94-EPA/600/4-91/002	? Test Species:	PP-Pimephales promelas					
Conc-%	1	2	3	4							
Control	1.0000	1.0000	1.0000	1.0000							
1	1.0000	0.9000	1.0000	1.0000							
3	1.0000	1.0000	1.0000	0.8000							
10	0.8000	1.0000	0.9000	0.9000							
30	0.9000	1.0000	1.0000	1.0000							
100	1.0000	1.0000	0.9000	1.0000							

			Transform: Arcsin Square Root					_	1-Tailed		Isotonic		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean	
Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	4				1.0000	1.0000	
1	0.9750	0.9750	1.3713	1.2490	1.4120	5.942	4	0.583	2.410	0.1685	0.9750	0.9750	
3	0.9500	0.9500	1.3358	1.1071	1.4120	11.411	4	1.090	2.410	0.1685	0.9500	0.9500	
10	0.9000	0.9000	1.2543	1.1071	1.4120	9.935	4	2.255	2.410	0.1685	0.9500	0.9500	
30	0.9750	0.9750	1.3713	1.2490	1.4120	5.942	4	0.583	2.410	0.1685	0.9500	0.9500	
100	0.9750	0.9750	1.3713	1.2490	1.4120	5.942	4	0.583	2.410	0.1685	0.9500	0.9500	

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	-normal dis	stribution (p <= 0.01)		0.85889		0.884	-	-1.0455	1.0141
Equality of variance cannot be co	nfirmed									
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	100	>100		1	0.07836	0.08037	0.01161	0.00978	0.35399	5, 18

Treatments vs Control

Linear Interpolation (200 Resamples) SD Skew 95% CL(Exp) **Point** 1C05 >100 IC10 >100 >100 IC15 1.0 IC20 >100 9.0 IC25 >100 0.8 IC40 >100 IC50 >100 0.7


			La	rval Fish Growth and Surviv	al Test-7 Day Bio	omass
Start Date:	2/20/2007		Test ID:	510180pp	Sample ID:	Rutgers
End Date:	2/27/2007		Lab ID:	AAT	Sample Type:	PREPARED
Sample Date: Comments:			Protocol:	EPAF 94-EPA/600/4-91/002	Test Species:	PP-Pimephales promelas
Conc-%	1	2	3	4		
Control	0.3820	0.4370	0.3340	0.3490		
1	0.3540	0.3740	0.4240	0.3710		
3	0.3840	.0.3770	0.4090	0.3910		
10	0.3080	0.3540	0.3920	0.3770		
30	0.3860	0.4140	0.4600	0.3930		
100	0.4000	0.4210	0.3350	0.4310		

				Transform	n: Untran	sformed		1-Tailed			Isotonic	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
Control	0.3755	1.0000	0.3755	0.3340	0.4370	12.154	4				0.3857	1.0000
1	0.3808	1.0140	0.3808	0.3540	0.4240	7.918	4	-0.210	2.410	0.0602	0.3857	1.0000
3	0.3903	1.0393	0.3903	0.3770	0.4090	3.522	4	-0.590	2.410	0.0602	0.3857	1.0000
10	0.3578	0.9527	0.3578	0.3080	0.3920	10.249	4	0.710	2.410	0.0602	0.3857	1.0000
30	0.4133	1.1005	0.4133	0.3860	0.4600	8.073	4	-1.510	. 2.410	0.0602	0.3857	1.0000
100	0.3968	1.0566	0.3968	0.3350	0.4310	10.875	4	-0.850	2.410	0.0602	0.3857	1.0000

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ution (p > (0.01)		0.98632		0.884		0.0374	-0.4054
Bartlett's Test indicates equal var		3.56512		15.0863						
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	100	>100		1	0.06025	0.16045	0.00145	0.00125	0 36656	5, 18
										•

Treatments vs Control

Linear Interpolation (200 Resamples) SD 95% CL(Exp) Point % IC05 >100 >100 IC10 IC15 >100 IC20 >100 IC25 >100 IC40 >100 1C50 >100

890 No	rth Grai	Graham St. Job #: 5/-ol-80 Client: OWN, PA 18109 Address Initial Chemistry Upon Arrival @ Laboratory							Howelse'k Rutgers C Salem	Baird Organics Ohio	San	ntact:	AIN O Denny Return : Lab dis	, La, to clie	1e]
		Upo							SAMPLE I	NFORMATI	ON		1	oxicity Requ	Testing ested	<u> </u>
Sample #	Temp °C	Dis. O ₂	pН	Alk. mg/L	Hard. mg/L	Cl- mg/L	Sample Identi	ification	Sample Type C = Comp G=Grab	Sample Volume	Sample Date	Sample Time	Acute	Chronic	Sediment	Other
01	1.5						OUTFALL 2-	19-07	G	2/2gal	2-19-07	1300		メ		
																-
									,							
Samples was 1. Collec	ted by A	AAT per		į			ported on ice ✓ No [] CUSTOI		Received with Yes [] ORMATION	in holding tir No []	ne? 4. Samp	le matrix is	: Liq Soi		Sediment Other Lab	[] [] Use
Sample #	Rel	inquisl	ned by:		Received		Date	Time		shed by:	Received 1	for Lab:	Date	Time		ľN#
01		D.L.L.			Fed ex	c	2-19-07	/500	Fed	ex	T.P.S	la	2/20/17	830	07	13x
															_	
											-			,		
Special Ins	truction	s: Dilut	ion water	collection	on date(s)						on these samp			Yes	(No)	
		N/A							Will addition	nal parameters	be analyzed or	these samp	les?	Yes	No	

AME	MERICAN AQUATIC TESTING, INC.								Howelsik	Baild		CH	AIN O	F CU	JSTOJ	DY
890 No				Job#:	51-	01-8			Howels & B Rutgers O	ragnics	Client Con	tact:	Denny	, La.	<u>1e</u>	
ALLEN		۷, PA 1	8109					dress:	Salem	Ohio	~	_	<u>'</u>			_
610 434	9015						Pho	ne #:			Sam	_	Return			ĺ
						•					<u>Disp</u>	osal:	Lab dis	posal	$ \times$	1
		Upo	Initial C on Arrival	hemistry @ Labor				-	SAMPLE IN	NFORMATI	ON		I	Toxicity Regu	Testing	,
Sample #	Temp °C	Dis.	pН	Alk. mg/L	Hard. mg/L	Cl- mg/L	Sample Identi	fication	Sample Type C = Comp G=Grab	Sample Volume	Sample Date	Sample Time	Acute	Chronic	Sediment	Other
02	20						OUTFALL 2		G	2/2901	2-21-07	1300		X		
					<u> </u>	ļ			;				_			<u> </u>
					 											
	• • • • • • • • • • • • • • • • • • • •				 											
					-											
		ļ	<u> </u>													
				<u> </u>	ļ									 		
Samples w	ere:	L					<u> </u>									<u> </u>
1. Collec	ted by A	_			[]		sported on ice	? 3.	Received with		ne? 4. Samp	le matrix is			Sediment	[]
	<u> </u>	lient per	sonnei		№	Yes D	✓ No [] CUSTOI	Y INFO	Yes [] ORMATION	No []			Soi	11	Other Lab	Use
Sample #	Re	linguisl	hed by:	I	Receive	d by:	Date	Time		ished by:	Received 1	or Lab:	Date	Tim		ΪN#
67		ENNY A			Fed C;		2-21-07	1500	Fed	ex		Slap	2/22/07	849		
	 							<u> </u>						 -		
	+					·								 	_	
														 		
	 			-										 		
	 			-			+				~~~~~~					
Special In	struction	s: Dilut	tion water	collectie	on date(s						on these samp		nlos?	Yes	(No)	
	N/A								will addition	nai parameters	oc analyzed o	u mese sam	h1621	Yes	No	

CHAIN OF CUCTODY

890 No	rth Gra	ham St			TES 5/-		G, INC. Clier Addr		Howels & B Rutgers O	ragnics	Client Con		Denny			DY
ALLEN 610 434		N, PA 1	8109				Phon		Salem (330) 332-		Sam	inle	Return	to clie	nt ['	1
010 -15-	+ 2012						1 11/11	IC 11 .	(200)000	<u>702 (</u>		osal:	Lab dis			l
		Upo		hemistry @ Labor	atory				SAMPLE IN	FORMATI	ON		T	oxicity Requ	Testing lested	;
Sample #	Temp °Ç	Dis. O ₂	pН	Alk. mg/L	Hard. mg/L	Cl- mg/L	Sample Identific	ation	Sample Type C = Comp G=Grab	Sample Volume	Sample Date	Sample Time	Acute	Chronic	Sediment	Other
03	40						OUTFALL 2.	23-07	G	2/2gal	2-23-07	1230		X		
						,										
																
Samples w 1. Collec	ted by A	AAT per				2. Trans Yes [Received with Yes X	in holding tir			s: Liq Soi		Sediment Other Lab	<u> </u>
Sample #		linquish			Received		Date	Time	1	shed by:	Received f	or Lab:	Date /	Time		
03	J.D.	, L.L.			EDEX		2-23-07	1300	FEDE	X.	- Mul	0	02/24/07	1030	2 07/3	54
			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·											
												·				
			· · · · ·			· · · · ·		···								
Special In	struction	s: Dilut	ion water	collection	on date(s)						on these samp			Yes	(No)	
						N/A			Will addition	al parameters	be analyzed on	these sam	ples?	Yes	No	

APPENDIX II OHIO EPA NPDES BIOMONITORING REPORT FORM

Date Created: 5/24/91

Last Revised: 9/23/91

Page 1 of 5

OHIO EPA NPDES BIOMONITORING REPORT FORM

GENERAL INFORMATION

1.	Facility Name:	Ruetgers-Nease	Corporation
	Reporting Date:		

2. Address: 1224 Benton Road
Salem, Ohio 44460

Substantive

- 3. Ohio EPA Permit Number: Discharge Criteria
- 4. Application (NPDES) No.
- 5. Facility Contact: Ralph Pearce 6. Phone No.: (800) 458-3434
- 7. Consultant/Testing Lab Name: American Aquatic Testing, Inc.
- 8. Consultant/Lab Contact: Chris Nally 9. Phone No.: (610) 434-9015
- 10. Receiving Water(s) of Discharge: <u>Unnamed Tributary of the Middle Fork of Middle Creek</u>.

02/19/07 02/21/07 02/23/07 001 001 001 001 .

Average Daily Flows: on Day Sampled (gal/day)

11. Outfall(s) Tested:

12. Is your current Standard Operating Procedure (SOP) Manual on file with Ohio EPA? (Yes/No) No If yes, date submitted:

If no, an SOP that follows Ohio EPA and/or U.S. EPA protocols must be submitted as soon as possible in order to eliminate the need to include this information with every report.

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Signature

Christopher J./ Nally, President

DEPA	Permit	No.:		_			
			CHRONIC	TOXICITY	TEST	SAMPLING	DATA

Page <u>2</u> of <u>5</u>

TABLE

Sampling Sum	mary for Ch	ronic Toxicit	y Tests	
Sampling Location & Description	Sample	Sample Collection Beginning MM/DD/Time MM/DD/Time	Ending	Weather/Receiving Stream Conditions
Final Effluent: Processed Water				
Outfall No.: 001	lst	02/19/ 1300	N/A	N/A
Type (Grab/Composite): <u>Grab</u>	2nd	02/21 1300	N/A	N/A
Volume Collected: 2.5-gallon	3rd	02/23 1230	N/A	N/A
Upstream Station:		N/A	N/A	N/A
Waterbody:	1st			
Station No.:	2nd			
Type (Grab/Composite):	3rd			
Volume Collected:				
Downstream Station (Near-field):		N/A	N/A	N/A
Waterbody:	1st			
Station No.:	2nd			
Type (Grab/Composite):	3rd			
Volume Collected:				
Downstream Station (Far-field):		N/A	N/A	N/A
Waterbody:	lst			
Station No.:	2nd			
Type (Grab/Composite):	3rd			
Volume Collected:				
Additional Stations (If needed):		N/A	N/A	N/A
Waterbody:	lst			
Station No.:	2nd			
Type (Grab/Composite):	3rd			
Volume Collected:				

OEPA	Permit	No.:			
------	--------	------	--	--	--

Page __3__ of __5

TOXICITY TEST CONDITIONS

TABLE

Summary of Toxicity Test Conditions

1. Test Species and Age:

2. Test Type and Duration:

3. Test Dates:

4. Test Temperature (°C):

5. Light Quality:

6. Photoperiod:

7. Feeding Regime:

8. Size of Test Vessel:

9. Volume and Depth of Test Solutions:

10. No. of Test Organisms per Test Vessel:

11. No. of Test Vessels per Test Solution:

12. Total No. of Test Organisms
 per Test Solution:

13. Test Concentrations (as
 percent by volume effluent):

14. Renewal of Test Solutions:

15. Dilution and Primary Control Water:

16. Secondary Control Water:

17. Aeration? Before/During Test:

18. Endpoints Measured:

19. If secondary control water used as diluent due to toxicity in primary control water, indicate number of consecutive tests conducted with alternative diluent: Ceriodaphnia dubia - 2 to 7 hrs old

3 brood Chronic Toxicity Test

February 20 - February 27 2007

25.0°C

340-ft candles

16 hours light / 8 hours dark

0.1 mL Selenastrum and 0.1 mL YCT daily

30 mL

15 mL / 25 mm

One

Ten

Ten

0%, 1%, 3%, 10%, 30%, and 100%

Daily

Moderately Hard Reconstituted Water

N/A

None

NOEC, LOEC, TU_c , ChV, LC_{50} , IC_{25}

N/A

CHRONIC TOXICITY TEST RESULTS FOR CERIODAPHNIA DUBIA

TABLE

Results of a 7-day <u>Ceriodaphnia</u> <u>dubia</u> Survival and reproduction Test Conducted (genus) (species)

<u>02/20/07 - 02/27/07</u> Using Effluent form Outfall <u>001</u>. (number)

				Cumulati	ve Percent	Mortality ^a				
			(Cun	ulative Pe	rcent Adve	rsely Affec	ted) a		Num	ber of
	1								Young P	roduced ^a
Test Solutions		1	22		4	5	6	7	Total	Mean
Primary control/	- {	0	0	0	0	0	0	0		
Dilution water		(0)	(0)	(0)	(0)	(0)	(0)	(0)	302	30.2
Secondary	İ	N/A								
Control		()	()	()	()	()	()	()	N/A	N/A
1 % Effluent	Ì	0	0	0	0	0	0	0		
		(0)	(0)	(0)	(0)	(0)	(0)	(0)	300	30.0
3 % Effluent		0	0	0	0	0	0	0		
		(0)	(0)	(0)	(0)	(0)	(0)	(0)	304	30.4
10 % Effluent	ŀ	0	0	0	0	0	0	0		
		(0)	(0)	(0)	(0)	(0)	(0)	(0)	298	29.8
30 % Effluent		0	0	0	0	0	0	0		
		(0)	(0)	(0)	(0)	(0)	(0)	(0)	315	31.5
<u>100 %</u> Effluent		0	0	0	0	0	0	0		
		(0)	(0)	(0)	(0)	(0)	(0)	(00)	304	130.4
Near-Field	ļ	N/A								
Sample	L	()	()	()	()	()	()	_(_)_	N/A	N/A
Far-Field		N/A								
Sample		()	()	()	()	()	()	()	N/A	N/A
None III		100.0/	100.0/	100.0/	100.0/	100.0/	100.0/	100.04	Calculated T	Uc Value
NOEC Values		100 %	100 %	100 %	100 %	100 %	100 %	100 %	for Survival:	1.00
		N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Limits U	JL	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
									Calculated T	Uc Value
EC ₅₀ Values		N/A	N/A	N/A	N/A	N/A	N/A	N/A	for Reproduc	tion: 3.33
95% Confidence I	LL	N/A	N/A	N/A	N/A	N/A	N/A	N/A	•	
Limits U	JL	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
7-day NOEC for M	1orta	lity:	7	-dav NOI	EC for Re	production):	Method	(s) Used to Det	ermine
100%		J]	y = 1 = 1	Values:	()				
7-day LOEC for M	1orta	lity:	,	7-day LOI	orov D					
Not Detecte		-	7-day LOEC for Reproduction: Kolmog Not Detected							
			Chronic Value for Reproduction: Bartlett							
Chronic Value for N	Mort	ality:	C	hronic Va	alue for Re	eproductio	n:	Bartlett'	s Test	
	Mort	ality:	C	hronic Va	alue for Re	productio	n:	Bartlett'	s Test	

OEPA	Permit No.:	<u> </u>

Page <u>5</u> of <u>5</u>

ADDITIONAL TOXICITY TEST INFORMATION

- 1. Submit all raw data and statistical calculations/printouts obtained during the test(s). Data must be presented in tabular form and must include all physical and/or chemical measurements recorded during the tests and sampling (e.g., temperature, conductivity, dissolved oxygen, pH, hardness, alkalinity, etc.).
- 2. Method(s) used to verify near-field and/or far-field sampling locations must be included if stream testing is required. Maps, sketches, and/or drawings may be used to show locations.

CONCLUSIONS/COMMENTS

Indicate below any other relevant information that may aid in the evaluation of this report. Include any deviations from your SOP that were necessary for these tests and any recent Standard Reference Toxicant (SRT) results obtained. Do these results agree with previous SRT results? Attach additional pages as needed.

Standard reference Toxicant	test:
Toxicant:	Potassium chloride
Date:	02/12-19/07
IC ₂₅ :	209.9 ppm
Average:	326.8 ppm
Upper Limit:	441.6 ppm
Lower Limit:	242.1 ppm
Test value +/- 2 std Dev.:	Yes

Date Created: $\frac{5/24/91}{2}$ Last Revised: $\frac{9/23/91}{2}$

Page 1

OHIO EPA NPDES BIOMONITORING REPORT FORM

GENERAL INFORMATION

		GEN	ERAL INFORMAT	TON	
1.	Facility Name: Ruetge Reporting Date: March 6		oration	_	
2.	Address: 12				
		Substanti	ve		
	Ohio EPA Permit Number: Application (NPDES) No.		Criteria		
5.	Facility Contact: Ral	ph Pearce	6. Phone	No.: (800) _4	158-3434
7.	Consultant/Testing Lab	Name: <u>America</u>	n Aquatic Te	sting, Inc.	
8.	Consultant/Lab Contact:	Chris Nally	_ 9. Phon	e No.: (<u>610</u>) <u>4</u>	34-9015
	Receiving Water(s) of D	ischarge: <u>Unn</u>	amed Tributa	ry of the Midd	ile Fork of
		02/19/07	02/21/07	02/23/07	
11.	Outfall(s) Tested:	001	001	001	
	Average Daily Flows: on Day Sampled (gal/day)			
12.	Is your current Standar Ohio EPA? (Yes/No) No If no, an SOP that fol submitted as soon as pothis information with e	o If yes, lows Ohio EPA ssible in ord	date submitte and/or U.S.	ed: EPA protocols	must be

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Signature / Christopher J. Nally, Preside

Daté

OEPA	Permit	No.	:	
------	--------	-----	---	--

CHRONIC TOXICITY TEST SAMPLING DATA

Page <u>2</u> of <u>5</u>

TABLE

Sampling Sum	Sampling Summary for Chronic Toxicity Tests							
Sampling Location & Description	Sample	Sample Collection Beginning MM/DD/Time MM/DD/Time	Ending	Weather/Receiving Stream Conditions				
Final Effluent: Processed Water								
Outfall No.:001	1st	02/19/ 1300	N/A	N/A				
Type (Grab/Composite): <u>Grab</u>	2nd	02/21 1300	N/A	N/A				
Volume Collected: 2.5-gallon	3rd	02/23 1230	N/A	N/A				
Upstream Station:		N/A	N/A	N/A				
Waterbody:	1st							
Station No.:	2nd							
Type (Grab/Composite):	3rd							
Volume Collected:								
Downstream Station (Near-field):		N/A	N/A	N/A				
Waterbody:	lst							
Station No.:	2nd							
Type (Grab/Composite):	3rd							
Volume Collected:								
Downstream Station (Far-field):		N/A	N/A	N/A				
Waterbody:	lst							
Station No.:	2nd							
Type (Grab/Composite):	3rd							
Volume Collected:								
Additional Stations (If needed):		N/A	N/A	N/A				
Waterbody:	lst							
Station No.:	2nd							
Type (Grab/Composite):	3rd							
Volume Collected:								

TOXICITY TEST CONDITIONS

TABLE

Summary of Toxicity Test Conditions

1		lest	S	pecies	and	Age:
---	--	------	---	--------	-----	------

2 Test Type and Duration:

3. Test Dates:

4. Test Temperature (°C):

5. Light Quality:

6. Photoperiod:

7. Feeding Regime:

8. Size of Test Vessel:

9. Volume and Depth of Test Solutions:

10. No. of Test Organisms per Test Vessel:

11. No. of Test Vessels per Test Solution:

12. Total No. of Test Organisms per Test Solution:

13. Test Concentrations (as percent by volume effluent):

14. Renewal of Test Solutions:

15. Dilution and Primary Control Water:

16. Secondary Control Water:

17. Aeration? Before/During Test:

18. Endpoints Measured

19. If secondary control water used as diluent due to toxicity in primary control water, indicate number of consecutive tests conducted with alternative diluent: Pimephales promelas - < 48-hr old

7-day Chronic Toxicity Test

20 February - 27 February 2007

25.0°C

340-ft candles

16 hours light / 8 hours dark

0.1 mL Artemia nauplii two times daily

1000 mL

500 mL / 92 mm

Ten

Four

40

0%, 1%, 3%, 10%, 30%, and 100%

Daily

Moderately Hard Reconstituted Water

N/A

None

NOEC, LOEC, TUc, ChV, LC50, IC25

N/A

CHRONIC TOXICITY TEST RESULTS FOR Pimephales Promelas

TABLE

Results of a 7-day <u>Pimephales promelas</u> Survival and Growth Test Conducted (genus) (species)

02/20/07 - 02/27/07 Using Effluent form Outfall 001 . (number)

Test Solutions											
Test Solutions					Cumulati	ve Percent	Mortality				
Test Solutions				(Cun	nulative Pe	rcent Adve	rsely Affec	eted) a			
Primary control/						Test Day				Dry W	eight ^a
Dilution water							5	6	7	Total	Mean
Secondary Control			_	0	-	_	•	0	0	<u> </u>	
Control () (Dilution water			(0)	(0)	(0)	(0)	(0)	(0)	1.5020	0.3755
1 % Effluent			N/A								
1.5232 0.3808 3 % Effluent			()	()	()	()	()	()	()	N/A	N/A
3 % Effluent	<u>1 %</u> Effluent		_	-	•	v	1	1	1		
10 % Effluent			-	(0)	(0)					1.5232	0.3808
10 % Effluent	3 % Effluent		•	1	1	_	_	_			0.2002
100	10.04 7500									1.5612	0.3903
30 % Effluent	10 % Effluent		_		-	•	•	•	-	1 4212	0.2579
100 % Effluent	20 0/ Effluent		_`_			•	(10)			1.4312	0.3378
100 % Effluent	_30_% Elliuent		-	•	_	-	(2.5.)	-	-	1 6532	0.4133
Near-Field	100 % Effluent					1	1	1		1.0332	0.4133
Near-Field Sample	_100_/6 Elliucht		_	_	-	(25)	(25)	(25)	-	1 5872	0.3968
Sample	Near-Field			(0)	(• /	(2.5)	(2.5)	(2.5)	(2.5)	1.5072	0.5700
Far-Field Sample N/A			()	()	()	()	()	()	()	N/A	N/A
NOEC Values			N/A								
NOEC Values										N/A	N/A
NOEC Values 100 % 100 % 100 % 100 % 100 % 100 % 100 % for Survival: 1.00 95% Confidence LL Limits LL V/A N/A			()	()	()	()	()	()	()		
NOEC Values 100 % 100 % 100 % 100 % 100 % 100 % 100 % for Survival: 1.00 95% Confidence LL Limits LL V/A N/A										Calculated TI	Jc Value
Limits UL N/A N/A </td <td>NOEC Values</td> <td></td> <td>100 %</td> <td>1</td> <td></td>	NOEC Values		100 %	100 %	100 %	100 %	100 %	100 %	100 %	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	95% Confidence	LL	N/A	N/A	N/A	N/A	N/A	N/A	N/A		· · ·
EC50 Values N/A	Limits	UL	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
EC ₅₀ Values								1		Calculated TI	Ic Value
95% Confidence LL N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	EC50 Values		N/A	N/A	N/A	N/A	N/A	N/A	N/A	l.	
Limits UL N/A N/A N/A N/A N/A N/A N/A N/A N/A 7-day NOEC for Mortality: 100% 7-day LOEC for Mortality: Not Detected Chronic Value for Mortality: 1.0 N/A N/A N/A N/A N/A N/A N/A N/	95% Confidence	LL	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
100% 100% Values: 7-day LOEC for Mortality: 7-day LOEC for Growth: Shapiro-Wilks Test Not Detected Not Detected Chronic Value for Mortality: Chronic Value for Growth: 1.0 1.0 Values: Shapiro-Wilks Test Bartlett's Test	1		N/A	N/A	N/A	N/A	N/A	N/A:	N/A		
100% 100% Values: 7-day LOEC for Mortality: 7-day LOEC for Growth: Shapiro-Wilks Test Not Detected Not Detected Chronic Value for Mortality: Chronic Value for Growth: 1.0 1.0 Values: Shapiro-Wilks Test Bartlett's Test	7-day NOEC fo	r Mort	ality:		7-dav N	NOEC for	Growth:	· · · · · · · · · · · · · · · · · · ·	Methodo	(s) Used to Det	ermine
7-day LOEC for Mortality: Not Detected Chronic Value for Mortality: 1.0 7-day LOEC for Growth: Not Detected Chronic Value for Growth: 1.0 Shapiro-Wilks Test Bartlett's Test			1				1				
Not Detected Chronic Value for Mortality: Chronic Value for Growth: 1.0 Not Detected Bartlett's Test											
1.0	,		1				1				
1.0	Chronic Value for Mortality:			Chronic Value for Growth: Barr			Bartlett'	rtlett's Test			
a - indicate significant differences from the primary control with an * (p=0.05).						1.0					
	a – indicate significant differences from the primary control with an * (p=0.05).										

OEPA	Permit	No.:
------	--------	------

Page <u>5</u> of <u>5</u>

ADDITIONAL TOXICITY TEST INFORMATION

- 1. Submit all raw data and statistical calculations/printouts obtained during the test(s). Data must be presented in tabular form and must include all physical and/or chemical measurements recorded during the tests and sampling (e.g., temperature, conductivity, dissolved oxygen, pH, hardness, alkalinity, etc.).
- 2. Method(s) used to verify near-field and/or far-field sampling locations must be included if stream testing is required. Maps, sketches, and/or drawings may be used to show locations.

CONCLUSIONS/COMMENTS

Indicate below any other relevant information that may aid in the evaluation of this report. Include any deviations from your SOP that were necessary for these tests and any recent Standard Reference Toxicant (SRT) results obtained. Do these results agree with previous SRT results? Attach additional pages as needed.

Standard reference Toxicant	test:
Toxicant:	Potassium chloride
Date:	02/20 - 27/07
IC ₂₅ :	557.7 ppm
Average:	570.9 ppm
	604.0
Upper Limit:	694.9 ppm
Lower Limit:	446.9 ppm
Test value +/- 2 std. Dev.:	YES